二元一次方程知识点总结(精选10篇)
1.二元一次方程知识点总结 篇一
一.二元一次方程(组)的相关概念
1.二元一次方程:含有两个未知数并且未知项的次数是1的方程叫做二元一次方程。
2.二元一次方程组:二元一次方程组两个二元—次方程合在一起就组成了一个二元一次方程组。
3.二元一次方程的解集:
(1)二元一次方程的解
适合一个二元一次方程的每一对未知数的值.叫做这个二元一次方程的一个解。
(2)二元一次方程的解集
对于任何一个二元一次方程,令其中一个未知数取任意二个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集。
4.二元一次方程组的解:二元一次方程组可化为
使方程组中的各个方程的左、右两边都相等的未知数的值,叫做方程组的解。
二.利用消元法解二元一次方程组
解二元(三元)一次方程组的一般方法是代入消元法和加减消元法。
1.解法:
(1) 代入消元法是将方程组中的其中一个方程的未知数用含有另一个未知数的代数式表示,并代入到另一个方程中去,消去另一个未知数,得到一个解。代入消元法简称代入法。
(2)加减消元法利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加或相减,以消去这个未知数,使方程只含有一个未知数而得以求解。这种解二元一次方程组的方法叫做加减消元法,简称加减法。
用加减法消元的一般步骤为:
①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;
②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;
③解这个一元一次方程;
④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;
⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
2.思想:“消元”,即将“二元”转化成“一元”,这种方法体现了数学研究中的化归思想,具体说就是把“新知识”转化成旧知识,把“未知”转化成“已知”,把“复杂问题”转化成“简单问题”。
三.二元一次方程的整数解问题
由于二元一次方程的解不唯一性(无数多个),在实际生活中又有较多的例子可以求出二元一次方程的整数解。
四.二元一次方程组的检验法
常用的方法是:将这对数值分别代入方程组中的每个方程,只有当这对数值满足其中的所有方程时,才能说这对数值是此方程的解;如果这对数值不满足任何一个方程,那么它就不是方程组的解。
五.三元一次方程组及其解法
三元一次方程组在课程中没有提到,但在中考中,部分省、市命题仍有考题,竞赛中也常用到它的解法,这里作个补充。
1.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组叫三元一次方程组。
2.解三元一次方程组的方法与解二元一次方程组类似,只是多用一次消元法,它的基本思路是:
3.解三元一次方程组的一般步骤如下:
(1)把方程组里的一个方程分别与另外两个方程组成两组,用代入法或加减法消去这两组中的同一个未知数,得到一个含有另外两个未知数的二元一次方程组;
(2)解这个二元一次方程组;
(3)将所求得的两个未知数的值代入原方程组中的任意一个方程中,求得第三个未知数的解,从而求出了方程的解。
注意:(1)要根据方程组的特点决定首先消去哪个未知数;
(2)原方程组的每个方程在求解过程中至少要用到一次。
常见考法
(1)考查方程的概念及方程的解;
(2)解方程;
(3)应用整数性质求方程的整数解。
误区提醒
(1)对二元一次方程的概念理解不准确,可能会忽视其中某一个条件;
(2)运用代入消元法时消错未知数;
(3)进行方程组两边相减时,容易漏掉减号“-”,把减数的负号“-”当作减号而出错。
2.二元一次方程组教案 篇二
一.二元一次方程的概念
含有两个未知数,并且两个未知数项的次数都是1的方程叫做二元一次方程. 判定一个方程是二元一次方程必须同时满足三个条件: 1.方程两边的代数式都是整式——分母中不能含有字母; 2.有两个未知数——“二元”;
3.含有未知数的项的最高次数为1——“一次”.
二.二元一次方程组的概念
由几个一次方程组成并且一共含有两个未知数的方程组叫做二元一次方程组 ..
1、下列方程中是二元一次方程的是()
3126xy0 y232xy10xy3yx0 5x22yxy10
x2、下列属于二元一次方程组的是()2x3y53xyz0
x351xy11xy5yx2 35xy222xy1xy0xy1xy0x1,y12xy1,x2y10,xy,xy3xy4x2y1a24|b|(a2x),xy的二元一次方程,则(b1)y13a=,b=
3、如果是关于
4、若2x2a5a3y1是二元一次方程,求a的值.5、已知3xa22y2b55是二元一次方程,则a=b=.6、已知方程m3xm22yn10是关于x、y的二元一次方程,则m______,n______
三.二元一次方程的解
使二元一次方程两边的值相等的两个未知数的一组取值叫做二元一次方程的解.在写二元一次方程解的时候我们用大括号联立表示.
x1如:方程xy2的一组解为,表明只有当x1和y1同时成立时,才能满足
y1方程.
四.二元一次方程组的解
二元一次方程组中所有方程(一般为两个)的公共解叫做二元一次方程组的解. ...
1、下列各组数中,_________是方程x3y2的解;_________是方程2xy9的解;x3y2________是方程组的解
2xy9x1x5x3x2①;②;③;④y1y5y1y2
25、二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是()
x0A.1
y2B.x1 y1C.x1
y0D.x1
y1x
13、试写出一个二元一次方程组,使它的解是y3,这个方程组可以是________
x2,4、已知是方程x-ky=1的解,那么k=_______ y3x2mxy3的解,则m=_______,n=______.
5、已知是方程组y1xny6五、二元一次方程组的解法-----代入消元法
代入消元法:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法.
用代入消元法解二元一次方程组的一般步骤:
(1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成yaxb的形式;
(2)代入消元:将yaxb代入另一个方程中,消去y,得到一个关于x的一元一次方程;
(3)解这个一元一次方程,求出x的值;
(4)把求得的x的值代入yaxb中求出y的值,从而得出方程组的解; xa(5)把这个方程组的解写成的形式.
yb
1、把方程7x-2y15写成用含x的代数式表示y的形式,得()
A.y2x
517B.x152y
7C.y7x15
2D.y157x
22、已知x=3t+1,y=2t-1,用含x的式子表示y,其结果是().
x1 32x5(C)y
3(A)y
y1 22x1(D)y
3(B)x2
3x4y2①
3、用代入法解二元一次方程组时,最好的变式是()
2xy5 ②24y23xy5A.由①得x3 B.由①得y
44、用代入法解下列方程组:
(1)y(=42x ①)2xy5 ②
(3)3m2n6 ① 4m3n1
②
2x1y4(5)3225 1x11 48y8
C.由②得x2 D.由②得y2x5 xy4 ①2xy5 ②(4)2p3q13p54q
(6)5x2y5a3x4y3(a其中a为常数)3
m12n3
x2y134(7)(8)4m3n7x:2y:3
5、若x-y+3与|2x+y|互为相反数,则x+y的值为__________
6、如果ab与-ab2y123xyx+
1是同类项,则x、y分别为___________
7、如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为__________
8、如图是一个正方体的展开图,标注了字母a的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,则a,x,y的值_______________________
9、若方程组 xy7,则3xy3x﹣5y的值是
.
3x5y3 4
10、若|x-y-1|+(2x-3y+4)2=0,则x=______,y=______.
11、二元一次方程组
12、小亮解方程组了两个数
4x3y7的解x,y的值相等,求k.
kx(k1)y32xyx5的解为,由于不小心,滴上了两滴墨水,刚好遮住
y#2xy12和▲,请你帮他找回▲这个数,▲=
.
Ax+By=2,x=1,x=2,13、甲、乙两人共同解方程组甲正确解得乙抄错C,解得
Cx-3y=-2,y=-1,y=-6,求A,B,C的值.
x3 ax5y15 ①变式:已知方程组 由于甲看错了方程①中的得到方程组的解为;乙看错了方程②a4xby2 ② y1x5中的b得到方程组的解为,若按正确的a、b计算,求原方程组的解.y4
14、关于x、y的二元一次方程组xy5k的解也是二元一次方程2x3y6的解,则
xy9kk的值是.变式:如果关于x、y的方程组
x2y7k的解满足3x+y=5,求k的值。
2xy82kxy3xmy2
15、若方程组xy1与方程组同解,则m=。
nxy
3.二元一次方程组教案 篇三
授课老师:李老师
考点一:判断二元一次方程
考点二:二元一次方程组的解的应用
若x、y互为相反数,且x+3y=4,,3x-2y=___________
4x3yk方程组的解与x与y的值相等,则k等于__________ 2x3y5
考点三:解二元一次方程组 1.代入消元法
名师传方法.有效提分
授课老师:李老师
x3y5yx3 2xy5y2x
59m2n35x2y5a(其中a为常数)4nm13x4y3a
2.加减消元法
2p3q132xy5 p54qxy1
考点4:“看错系数”问题的方法
看错方程组中哪个方程的系数,所得的解既是方程组中看错系数方程的解,也是方程组中没有看错系数方程的解,把解代入没有看错系数的方程中,构建新的方程组,然后解方程组
小明在解关于x、y的二元一次方程组xy3, 时得到了正确结果
3xy1x, 后来发现y1.“”“ ”处被墨水污损了,请你帮他找出、 处的值分别是__________
甲、乙两位同学解方程组{mx+y=5,① 2x-ny=13,②甲解题时看错了常数m,解得{x=7/2,y=-2,乙解题时看错了常数n,解得{x=3,y=-7,试求:(1)常数m、n的值;
名师传方法.有效提分
授课老师:李老师
考点五。利用同解方程组确定字母取值
3x5y6若方程组 的解也是方程3x+ky=10的解,则k的值是__________ 6x15y16
若关于x,y的方程组2xym的解是x2,则mn为__________ xmyny
1考点六.二元一次方程组应用题
1.工程问题:工作量=工作效率×工作时间
玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元。玲玲的爸爸妈妈商量后决定只选一个公司单独完成。(1)如果从节约时间的角度考虑应选哪家公司?(2)如果从节约开支的角度考虑呢?请说明理由。
2.增长率问题:原量=(1-增长率)=增长后的量 原量×(1-减少率)=减少后的量
为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出
名师传方法.有效提分
授课老师:李老师
台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.
(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴
政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这l228台汽车用户共补贴了多少万元?
.3.配套问题:较大量=较小量+多余量 总量=倍数×一份的量
某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只.现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?
4.年龄问题:年龄增长数相等
甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的岁数是你现在的岁数时,你将61岁”.请你算一算,甲、乙现在各多少岁?
名师传方法.有效提分
4.解二元一次方程组教案 篇四
教学目标
1、知识与技能目标
(1)会用代入法解二元一次方程组
(2)初步体会解二元一次方程组的基本思想“消元”。
(3)通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成由未知向已知转化,培养学生观察能力和体会化归思想:
(4)通过用代入消元法解二元一次方程组的训练,及选用合理、简捷的方法解方程组,培养学生的运算能力。
2、情感目标:
通过对比观察、研究探讨解决问题的方法,培养学生合作交流意识与探究精神。教学重点、难点
重点:用代入消元法解二元一次方程组。
难点:探索如何用代入消元法将“二元”转化为“一元”的过程。
教学过程
一、旧知复习
问题1:下列方程是二元一次方程吗?
(1)x3y7
(2)2y20(3)2x3
5(4)3xy9
问题2:你能把上面的二元一次方程改写成用x表示y(或用y表示x)的形式吗?
问题3:把(1)(2)两个方程合在一起是二元一次方程组吗?那由(3)(4)组成的呢?
x3y72x35(1){2y20
(2){3xy9
二、情境引入
老师周末和朋友一起去逛街,我们各买了1双相同的鞋,两人一共消费了600元,我的朋友买了鞋之后又去买了2件T恤,此次购物老师的朋友一共花了500元,你能帮老师计算一下鞋和T恤的价格分别是多少吗?
请说一说你的方法 还有不同的办法吗?
三、技能试炼
你有办法求出这两个方程组的解吗?
x3y72x35{(2){3xy9
2y20
这两个方程组你解出来了吗?
谁能给大家说一说解上面两个方程组的方法和思路呢?
四、例题解析:
你能想出办法求出这个方程组吗? xy22{
2x3y60解:由①,得
(1)
(2)
学生自己分析求解,教师规范解题格式
x22y
③
把③代入②,得
2(22y)3y60 解这个方程,得
y16
把y16代入③,得
(提出问题:把y的值带入到①或②中可以求出x的解吗?)
x6 所以这个方程组的解是
{x6y16
在上面求解过程中我们把其中的一个方程经过改写变形带入到另一个方程中去,使的未知数消去一个,把二元一次方程转化成了一元一次方程,我们把这种方法称为“代入消元法”。
例
2、试用代入法解下面的方程组
{2x3y0 3x2y1学生讨论交流,合作完成
归纳:通过例题你能说说用代入法解二元一次方程组的步骤有那些吗?
(1)(改写)在方程组中选一个系数简单的方程,将这个方程中的一个未知数用含另一个未知数的式子表示。(2)(代入)将变形后的式子代入另一个方程,消去一个未知数。
(3)(解方程)解一元一次方程。
(4)(带入求解)代入变形式求出另一个未知数的解。
(5)书写方程组的解。
五、随堂练习用代入法解下列方程组
(1){y32x3x2y8
(2){2x3y92x3y3
六、课时小结
1、怎样使用代入消元法?
2、用代入法解方程组要经历哪些步骤?
5.二元一次方程组讲课稿 篇五
本节课是义务教育课程标准试验教科书人教版七年级下册第八章第一节的内容《二元一次方程组》,下面我将从以下几个环节对本节的教学设计进行说明,一、教材分析,二、教学目标,三、教学重难点,四、教法学法,五、教学过程,六、板书设计。
教材分析
教材的地位与作用:《二元一次方程组》是人教版《数学》七年级下册第八章第一节的内容,本节内容的核心是对二元一次方程组及其相关概念的理解。它是继一元一次方程之后出现的,为后面学习二元一次方程组的解法打下基础,在教材中占据承上启下的地位。
教学目标
作为一名教师除了把知识教给学生,更重要的是应该教给学生学习的方法,培养他们的自主探索、合作创新的意识,使他们会学,因此根据新课标的要求,教材的特点及学生实际情况我制定了如下目标:
知识目标:了解二元一次方程的概念,会判断一组数是不是二元一次方程。 能力目标:在经历分析实际问题中数量关系过程中,使学生进一步体会方程是刻画现实世界的数学模型,通过自由思考与小组合作交流,培养学生的探讨能力。
情感目标:培养学生的发现意识和探索能力,使其具有强烈的好奇心和求知欲,认识知识的独立性。
教学重难点
本节课的重点是通过与一元一次方程的类比来认识二元一次方程,通过相比较,讨论掌握二元一次方程的定义。本节课的难点是引导学生运用“实际问题—数学问题的建模意识来理解二元一次方程的定义,使学生能达到本节设定的教学目标、我再从教法和学法上谈谈。
教法学法
在教法方面、结合课程标准的相关理念及七年级学生思维特征针对本节课的特点在教学中我主要采用了讲授式教学、合作式教学、探索式教学、自主式教学等教学方法,在教学过程中特别注意创设思维情境坚持以学生为主体、教师为主导的方针,在学法指导上、教给学生科学的学习方法、培养良好的学习习惯是最终目的。在本节课的教学中要帮助学生学会运用观察、猜想、合作、交流、抽象概括、总结归纳等方法来解决问题,将知识传授和能力培养融为一体,使学生不仅学到科学探究的方法。同时体验到探究的甘苦领会到成功的喜悦。
教学过程
为突出重点、突破难点达到教学目标,根据学生的认知规律和学生心理,在本节课的教学中我设定教学过程如下:本节课的教学过程由情景引入、新课探究、共同总结、反馈练习、总结提炼、布置作业六个教学环节构成. 板书设计
我采用这样分块式板书。将整个版面分为三个部分。第一部分用来回顾以前所学的相关知识及后面所要探索新知识的相关概念。第二部分实例分析,探索新知是本节课所要学习的重要部分,需学生共同探索参与,理解所学知识的价值,而第三部分则用于课堂的相关练习,便于巩固新知,理解加深,让学生懂得如何运用新知。这样的板书设计是本节课所要学习内容清晰明了,学生更容易理解,以上是我的全部说课内容,我的说课完毕。
6.二元一次方程组教学反思 篇六
在课堂上,学生能够结合例题,总结出利用函数的图象解二元一次方程组的解题步骤:变形、画图、标交点、得结论。利用足够充分的时间让学生画图象解方程组,学生标交点的工作做得还不是很好,为此,提出了怎样才确保是实实在在可以看出是由图象得到交点坐标,得到方程组的解的,学生讨论的结果还是让我们满意的,不但由交点画垂线,在数轴上标出交的横坐标和纵坐标,而且把交点坐标在图上写出来,做到双保险。
利用函数的图象复习了上一课的学习难点,学生理解的人数更多了,在利用函数的增减性认识和理解,确实效果会更好些,需要注意的是利用函数的增减性理解须从交点出发向左或者向右变化来理解。
7.二元一次方程组教学设计 篇七
作为一名教职工,时常要开展教学设计的准备工作,借助教学设计可以提高教学质量,收到预期的教学效果。教学设计应该怎么写呢?以下是小编收集整理的二元一次方程组教学设计(精选6篇),欢迎大家借鉴与参考,希望对大家有所帮助。
二元一次方程组教学设计1一、说教材分析
1、教材的地位和作用
二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。
2、教学目标
知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。
情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3、重点、难点
重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际生活中二元一次方程组的应用。
二、教法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
三、学法
“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
四、教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习旧知,温故知新
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,胜场积分+负场积分=总积分。
这两个条件可以用方程
x+y=22
2x+y=40
表示:
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.把两个方程合在一起,写成x+y=22
2x+y=40
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
(3)发现问题,探求新知
满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。
二元一次方程组教学设计2一、说教材
首先谈谈我对教材的理解,《二元一次方程组》是人教版初中数学七年级下册第八章第一节的内容,本节课的内容是二元一次方程组的概念以及二元一次方程组的解。在此之前学习了一元一次方程和解方程的步骤,为本节课打下了良好的基础。学了本节课为后面的解二元一次方程的方法做下铺垫。因此本节课有着承上启下的作用。
二、说学情
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,与类比学习能力。而且在生活中也为本节课积累了很多经验。所以,学生对于二元一次方程组概念理解较为容易,找出方程组的解,相对来说有难度,需要教师多引导。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握二元一次方程与二元一次方程组的概念,并了解它们的解,能正确地找出二元一次方程组的解。
(二)过程与方法
通过类比学习、自主探究、合作交流的过程,提升类比学习的能力、培养探究的意识。
(三)情感态度价值观
感受数学与生活的密切联系,培养学习数学的兴趣。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:二元一次方程与二元一次方程组的概念以及方程与方程组的解。教学难点是:二元一次方程组解的探究。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,我采用情境导入:展示篮球联赛图片,给出评分标准。并提出问题:这个队伍胜负场数分别是多少?
根据学生回答追问:用列方程解决问题,题中有几个未知数呢?从而引出本节课的课题《二元一次方程组》
这样设计的好处是:利用篮球联赛的图片导入,并讲清楚评分规则,不仅可以吸引学生探索的兴趣,还可以培养学生的数学应用意识。
(二)新知探索
接下来是教学中最重要的新知探索环节,主要通过三个活动展开学习。
活动一:学生尝试列方程解决问题,看看在列方程过程中遇到了什么困难?同桌之间互相交流。
学生分析题意,发现有未知数,可以使用列方程的方法解决问题。当让学生自己动手练习时,他们会发现,胜负的场数都是未知的。
此时教师可以引导学生发现和思考:要求的是两个未知数,能不能根据题意直接设两个未知数,使列方程变得容易呢?学生在这样的提示下会有一定的想法,但对于列出二元一次方程组来说还是比较困难的。
教师板书表格示意图,引导学生通过题意,发现题干中包含的必须同时满足的条件,得到两组关系式并设出未知数完成表格。
活动二:学生观察两个方程特点,与一元一次方程有什么不同?并试着下定义。
在这里学生通过类比学习,能够归纳出二元一次方程的概念:每个方程都含有两个未知数,并且含有未知数的项的次数都是1。了解了二元一次方程后,对于二元一次方程组的概念就可以很好的展开了,对于本题列了两个二元一次方程解决问题,像这样的方程组叫做二元一次方程组。
师生共同总结出二元一次方程与二元一次方程组的定义。
列出了二元一次方程组,要解决篮球联赛的问题,就要求出方程组的解,接下来进行第三个活动。
活动三:完成表格,以二元一次方程组中的一个方程为例。小组合作,找出几组整数解,并观察哪一组解也符合另一个方程。
在这里解二元一次方程组,可以先将问题简单化,先研究一个方程的解,找到几组解后,再看哪一组解也符合第二个方程。也就是两个方程的公共解。教师给出表格,小组在进行合作时,教师应引导学生思考结合题意,两个未知数应取正整数。填完表格后,师生共同总结出二元一次方程解的定义。
教师继续追问,哪一组的值也满足第二个方程。师生共同总结出什么叫做二元一次方程组的解。
得到方程组的解,回归情景得出实际问题的答案。
设计意图:通过三个活动展开本节课,不仅符合新课改的理念:学生是学习的主体,教师是教学活动中的组织者、引导者、合作者,还能通过小组活动、类比学习等活动丰富课堂。
(三)课堂练习
接下来是巩固提高环节。
练习:对下面的问题,列出二元一次方程组,并根据问题的实际意义,找出问题的解。
加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件。现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?
设计这道题可以让学生感受数学与生活的密切联系,学以致用。教师可以及时掌握学生本节课的学习情况,给予补充纠正。
(四)小结作业
在课程的最后我会提问:今天有什么收获?
引导学生回顾:二元一次方程组的定义与二元一次方程组的解。
本节课的课后作业我设计为:
思考除了用列表找二元一次方程组的解,还有什么方法能找出解,能不能将它变成我们熟悉的一元一次方程求解。
设计意图:本节课学生通过列表观察得到了方程组的解,作业设计为让学生思考解二元一次方程组的方法,并提示能不能把它变成熟悉的一元一次方程求解,为下节课的学习做下铺垫。
七、说板书设计
二元一次方程组教学设计3一、教材的地位与作用
在人教版教材的七至九年级的数学教材中,对方程进行知识性重点学的地方先后出现3次:七年级上册第二章(一元一次方程),七年级下册第八章(二元一次方程组),九年级上册第二十二章(一元二次方程)。所以二元一次方程组这章正处在对前面学习过的一元一次方程的有关知识起着检查巩固的,又为以后方程的学习进一步打下基础 的作用。
二元一次方程组的知识对学生以后学习一次函数,将来对有关线性方程的学习和研究都是一个中重要的入门基础。方程组是解决含有多个未知数问题的重要的数学工具,很多实际问题的解决都是用方程(组)这种数学模型来解决的,通过二元一次方程组的学习培养学生数学建模的数学思想和数学方法,为将来他们从事现实问题的线性分析和研究有着启蒙和激发效果。
二、教学目标
1、知识技能:能根据实际问题列出二元一次方程(组),了解二元一次方程(组)的含义,理解二元一次方程(组)的解的含义,会求待定条件下的二元一次方程(组)的解,并会检验给定的一对未知数的值是否是二元一次方程(组)的解。
2、数学思考:在根据实际情况列二元一次方程(组)解决实际问题的过程中体会到数学建模的思想,培养学生分析问题的数学意识。
3、解决问题:能根据问题中的未知数的个数列出相应的二元一次方程(组)
4、情感体验:①在列方程组-表示和解决实际问题的过程中,体验到数学的实用性,提
高学习数学的兴趣。
②在探讨解决问题的`过程中,敢于发表自己的见解,理解他人的看法并与
他人交流。
三、教学重点、难点
重点:能用二元一次方程(组)来表示一些实际问题的数量关系,弄清二元一次
方程(组)及它们解的含义。
难点:能针对具体问题列出二元一次方程(组),对二元一次方程(组)的解的探
求。
四、教法
(1)启发式教学
(老师耐心引导、分析、讲解和设置启发式提问,引导学生对本节知识的理解和掌握)
(2)学案式教学
(让学生自己阅读,自主讨论,探索研究获得知识,得出结论)
五、学法
在老师的引导下,充分发挥学生的主观能动性,通过观察、讨论、分析、探索等步骤,自己发现问题提
出问题,解决问题,能师生互动、生生互动,提高学生的合作意识,共同来完成教学目标。
六、教学过程
(一)复述回顾:以二人小组完成学案上的3个问题;
(二)创设情境――引入课题
鸡兔同笼
今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?
让学生用一元一次方程解决问题
设一个未知数列一元一次方程来解
就会出现方程: 2x+4(35-x)=94(设鸡x只)...........①
4x+2(35-x)=94(设兔x只)............②
让学生设俩未知数来解,估计大部分同学列不出来,那么无论列出与否,引出正
题--二元一次方程组。
(三)设问导读与自我检测
同学们自己阅读课本,并完成设问导读与自我检测的问题,完成之后,小
组讨论,与组长核对答案,先组内解决疑难问题,教师下去收集问题,并指导、生对新知识的探究。
1.对鸡兔同笼问题列方程,设鸡x只,兔y只,X+y=35........③
2x+4y=94......④
先引导学生观察方程③、④有什么特点。这样的方程叫什么方程?(试着让
学生说出二元一次方程的定义)举例说明需要注意的地方,和一些难以分辨的方
程,马上做自我检测第一题,发现问题解决问题。
2.前面的问题同事满足③、④,把他们和在一起就组成二元一次方程组,试着让
学生说出定义,做自我检测第三题,说明第四个也是二元一次方程组。
二元一次方程组教学设计4教学目标
1、认识二元一次方程和二元一次方程组.2、了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.重点、难点
重点:理解二元一次方程组的解的意义
难点:求二元一次方程的正整数解
教学过程
什么是一元一次方程?“元”指什么?“次”指什么?
什么是方程的解?
设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组奠定基础。
观看洋葱视频关于二元一次方程组的内容,通过熟悉的鸡兔同笼问题来引发思考。
视频内容
设计意图:用视频吸引学生注意力,引起学生的认知冲突,从而激发学生的学习兴趣和求知欲望,通过视频内容,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
根据视频内容归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.把两个二元一次方程合在一起,就组成了一个二元一次方程组.提问:对比两个方程,你能发现它们之间的关系吗?
师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.探究二元一次方程组的解:
满足x+y=10的值有哪些?请填入表中:
使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作.满足方程2x+y=16且符合问题的实际意义的x、y的值如下表:
不难发现x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。
归纳二元一次方程组的解的定义:二元一次方程组中的两个方程的公共解叫做二元一次方程组的解.思考:3x+y=10的解有多少个?一个解有几个数?正整数解有几个?
带着问题让学生观看洋葱数学视频二元一次方程组的解
视频内容
设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。
例、若方程2x2m+3+3y3n-7=0是关于x、y的二元一次方程,求m+n的值。
例2、暴风雨即将来临,一群蚂蚁正忙着搬家.其中有大蚂蚁和小蚂蚁,已知大小蚂蚁总共有1 00只,小蚂蚁一次只能搬一粒食物,大蚂蚁一次能搬两粒,一场忙碌过后,洞里的160粒食物刚好一次被安全转移,求大小蚂蚁各有几只?
例3、学生思考,试着解答,最后共同宣布答案。
设计意图:在例题讲解过程中,让学生充分活动起来,通过例题探究来进行总结,不要让学生死记硬背,重点在理解,会灵活运用。
1.下列方程中,是二元一次方程的是()
A.3x-2y=4z B.6xy+9=0
C.+4y=6 D.4x=
2.下列方程组中,是二元一次方程组的是()
A.B.C.D.3.在方程(k-2)x2+(2-3k)x+(k+1)y+3k=0中,若此方程为关于x,y的二元一次方程,则k值为()
A.-2 B.2或-2 C.2 D.以上答案都不对
4.二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是()
A、B、C、D、5.二元一次方程组的解为()
A.B.C.D.6.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()
A.1种B.2种C.3种D.4种
设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识
1.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据题意所列方程组正确的是()
A.B.C.D.2.甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为试计算a2 016+(-b)2 017.设计意图:这个环节是巩固本课知识点,通过设置练习,来检测学生的掌握情况,在这部分的设计中,主要是发挥学生作为教学主体的主动性,让学生感受学习的乐趣和成功的喜悦。
以提问进行:
(1)、二元一次方程(组)的特征是什么?
(2)、二元一次方程组的解要满足什么条件?
设计意图:通过共同小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,再一次突出本节课的学习重点,改善学生的学习方式。有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.同时为以后的学习作知识储备.
1.概念课教学模式:本节课的主要内容是二元一次方程(组)的有关概念,设计时按照“实例研究,初步体会——比较分析,把握实质——归纳概括,形成定义——应用提高,发展能力”的思路进行,让学生体会到是因为“需要”而学习新知识,逐步渗透应用意识。
2.类比法的运用:二元一次方程及其解的意义类比一元一次方程学习,一方面加深学生对于方程中“元”与“次”的理解,另一方面易于理清一元一次方程与二元一次方程“解”的相关知识的异同,同时为二元一次方程组相关概念扫清障碍。
3.分层递进,循环上升:学生对知识的理解,教师对学生的要求,都是由低到高,逐步提升,题目的设计从单一知识点的直接运用,逐渐到多个知识点的灵活运用,给学生设计必要的台阶,使其一步步向前,最终达到教学目标。
二元一次方程组教学设计5教学目标
知识与技能
(1)初步理解二元一次方程和一次函数的关系;
(2)掌握二元一次方程组和对应的两条直线之间的关系;
(3)掌握二元一次方程组的图像解法.过程与方法
(1)教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.情感与态度
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.教学重点
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系.教学难点
数形结合和数学转化的思想意识.教学准备
教具:多媒体课件、三角板.学具:铅笔、直尺、练习本、坐标纸.教学过程
第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)
内容:1.方程x+y=5的解有多少个?是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
二元一次方程和一次函数的图像有如下关系:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)
内容:1.解方程组
2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像.3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;
(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.第三环节典型例题(10分钟,学生独立解决)
探究方程与函数的相互转化
内容:例1用作图像的方法解方程组
例2如图,直线与的交点坐标是.第四环节反馈练习(10分钟,学生解决全班交流)
内容:1.已知一次函数与的图像的交点为,则.2.已知一次函数与的图像都经过点A(—2,0),且与轴分别交于B,C两点,则的面积为().(A)4(B)5(C)6(D)7
3.求两条直线与和轴所围成的三角形面积.4.如图,两条直线与的交点坐标可以看作哪个方程组的解?
第五环节课堂小结(5分钟,师生共同总结)
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
1.二元一次方程和一次函数的图像的关系;
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.2.方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;
(2)两条直线的交点坐标是对应的方程组的解;
3.解二元一次方程组的方法有3种:
(1)代入消元法;
(2)加减消元法;
(3)图像法.要强调的是由于作图的不准确性,由图像法求得的解是近似解.第六环节作业布置
习题7.7A组(优等生)1、2、3B组(中等生)1、2C组1、2
附:板书设计
一、内容分析
1.1学习任务分析:二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解,是本节课的核心概念。它既是一元一次方程的延续,又是三元一次方程组的基础。
1.2学生情况分析:就方程而言,初一学生已有一元一次方程的有关知识。所以本节课将引导学生自己发现新的方程并尝试通过类比“发现”有关新概念,使学生逐步建立方程的知识体系。但对学生来说二元一次方程组的解的表达形式是陌生的,对他们来说正确写出解并理解其含义具有一定的难度。
二、学习目标设计
知识目标:使学生掌握二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解的概念。能辨别那些是二元一次方程(组),并能正确的写出他们的解
能力目标:通过尝试命名新方程、尝试“发明”有关概念,培养学生知识移的能力,并从初一开始养成建立知识体系的习惯。通过学生自己设计问题,充分发挥其主体性,培养创新意识。
情感目标:体验数学发现中的快乐,激发学生自主学习的乐趣。
重点 二元一次方程(组)及二元一次方程(组)的解的概念。
难点 理解、判断二元一次方程(组)的解,并能用正确的形式表达二元一次方程(组)的解。
三、课堂结构设计
动手实验,引导学生发现问题(课题)、尝试命名和定义
练习反馈
结合实验,引导学生设计问题并发现方程组
练习反馈
引导学生在小结巩固中更好的理解概念
分层练习,引导学生积极探索
回归实验,学生完善自己的设计
四、教学媒体设计
充分利用PPT演示文稿的高效性、板书的实效性和可留性以及事物演示的直观性,将它们有机结合,各取其长。
五、教学过程设计
5.1动手实验,引导学生发现问题(课题)、尝试命名和定义。
实验情境:请学生将手中40厘米长的绳子绷成一个长方形。(课前结已打好,所占长度忽略不计)
相互交流:学生相互交流所绷成的长方形是否完全相同,有何异同之处。
(异:各自的长和宽不同;同:周长都是40厘米。)得出实验结论:周长为40厘米的长方形有无数个。(同时借助多媒体演示实验过程与结论)
引出课题:如果宽设为x厘米,长设为y厘米,你能发现x和y的关系么?(x+y=20)。学生会感觉这个式子既熟悉又陌生。熟悉的是这是个方程,陌生的是它是什么方程。引导学生将它与已学的一元一次方程作比较,(未知数的个数不同),进而请学生尝试给这样的方程命名,并给出命名的理由。(二元一次方程)。引出课题。并且由学生仿照一元一次方程的定义尝试定义二元一次方程。
二元一次方程的解:请学生说出二元一次方程的解的定义,(使二元一次方程左右两边相等的两个未知数的值)。强调是两个未知数的值。
就x+y=20这个方程而言,它的解是多少呢?学生发现有无数个,如x=1,y=19;x=2,y=18;通过设问x=1时,y还能取什么值?让学生理解虽有无数个解,但x和y是相互制约的,所以前面要加,x=1 这y=19一对值就是这个二元一次方程的一个解。并请学生规范的写出一些解。
这无数个解都适合这个长方形问题么?学生讨论后可得出,负数不行,小数可以,所以长方形问题仍然是无数个解,从而用方程解的知识解释了实验的结论。
最终用数学知识解释了实验的结论。
设计说明:实验与二元一次方程相对应,实验的结果与二元一次方程的无数个解相对应。每位学生都参与到实验中,用心感受x、y间的关系,激发探索数学知识的乐趣。并且这个实验将作为一条主线贯穿整个课堂。
学生自己发现、命名二元一次方程以及概念的知识基础是一元一次方程,知识迁移的要求不高,具有可行性。
练习1:下列哪些是二元一次方程,哪些不是?
① ②
③ ④
学生回答,并紧扣定义说明理由。
设计说明:牢抓二元、一次、方程三个关键词,设计问题,及时巩固定义。
请学生小结一元一次方程和二元一次方程的区别和联系。
练习2:写出二元一次方程 y-x=10 的一些解。
设计说明:在讲解解的问题中有三个关键点:
1、二元一次方程的解有无数个;
2、每一个解由x和y这一对相互制约的值组成;
3、解的书写格式。并通过练习反馈掌握情况。
5.2结合实验,引导学生设计问题并发现方程组。
5.2.1二元一次方程组的定义
周长为40厘米的长方形有无数个,若希望这道题的答案是一个而不是无数个,请学生想办法满足我的要求。(小组讨论)
从学生设计出的众多问题中选一个讲解,若加条件:长比宽长10厘米。
此时长y宽x需要同时满足x+y=20和y-x=10,如何在书写上体现“同时”呢?
x+y=20
前面加上,请学生给 y-x=10 命名。(二元一次方程组)并给出定义像这样,把两个二元一次方程合在一起就组成了二元一次方程组。
设计说明:仍通过原来的实验,自然引出二元一次方程组。
练习3:下列方程组中是二元一次方程组的有
(1)(2)(3)(4)
学生分析前三个,对第(4)个展开讨论
把两个二元一次方程合在一起是二元一次方程组,但二元一次方程组不一
定都是这样,如第(4)个方程组中共有两个未知数,未知数的指数都是1,它也是二元一次方程组。(强调是方程组中的未知数共2个)
练习4:判断下列方程组是否是二元一次方程组:
x=2 x+y=5
y=-1 2y-3z=1
设计意图:因为书上给出的定义是描述性定义,为了避免学生理解上产生偏差,特设计这一组练习,以强调所谓二元即指整个方程组中共含有两个未知数。
5.2.2二元一次方程组的解
研究方程组 x+y=20 的解。
y-x=10
在分别研究了这两个方程解的基础上,请学生对它们所组成方程组的解各抒己见,最终达成共识:把两个二元一次方程的公共解称为二元一次方程组的解。并发现找公共解麻烦,下课前告诉学生有快速求解的方法。
设计意图:激发学生的好奇心和探索欲望。
5.3学会小结,引导学生在小结巩固中更好的理解概念。
至此长方形问题圆满解决,满足这个条件的长方形只有一个:长15厘米,宽5厘米。在解决这个问题的过程中学了一些新的知识,二元一次方程,二元一次方程的解,二元一次方程组,二元一次方程组的解。
练习5:方程组 的解是()
(强调公共解)
练习6:写一个解为 的二元一次方程。
变: 写一个解为 的二元一次方程组。
练习7:就实验中的长方形问题,每位学生完整的写出设计的题目,并解答。
设计说明:练习5 巩固二元一次方程组的解的定义;
练习6 锻炼学生逆向思维的能力;
练习7 由于在刚刚设计中只采纳了一位学生的设计,现在给大家展示自我的机会,并且通过这个问题巩固全课的知识,前后呼应。
5.4课后作业:
必做题:94页 练习、95页1、2。
选做题:95页 综合运用3、4;
探索解二元一次方程组的方法。
六、教学评价设计
8.二元一次方程组的教案 篇八
1.认识二元一次方程和二元一次方程组.2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.教学重点:
理解二元一次方程组的解的意义.教学难点:
求二元一次方程的正整数解.教学过程:
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
思考:
这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.这两个条件可以用方程
x+y=22
2x+y=40
表示.上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.把两个方程合在一起,写成
《二元一次方程组》教案nx+y=22
2x+y=40
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.探究:
满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.x
上表中哪对x、y的值还满足方程②
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.例1(1)方程(a+2)x +(b-1)y = 3是二元一次方程,试求a、b的取值范围.(2)方程x∣a∣ – 1+(a-2)y = 2是二元一次方程,试求a的值.例2 若方程x2 m –1 + 5y3n – 2 = 7是二元一次方程.求m、n的值
例3 已知下列三对值:
《二元一次方程组》教案n《二元一次方程组》教案n《二元一次方程组》教案n x=-6 x=10 x=10
y=-9 y=-6 y=-1
(1)《二元一次方程组》教案n《二元一次方程组》教案n哪几对数值使方程《二元一次方程组》教案nx-y=6的左、右两边的值相等?
(2)哪几对数值是方程组 的解?
例4 求二元一次方程3x+2y=19的正整数解.课堂练习:
教科书第102页练习
习题8.1 1、2题
作业:
教科书第102页3、4、5题
评价与反思
1.概念课教学模式:本节课的主要内容是二元一次方程(组)的有关概念,设计时按照“实例研究,初步体会——比较分析,把握实质——归纳概括,形成定义——应用提高,发展能力”的思路进行,让学生体会到是因为“需要”而学习新知识,逐步渗透应用意识。
2.类比法的运用:二元一次方程及其解的意义类比一元一次方程学习,一方面加深学生对于方程中“元”与“次”的理解,另一方面易于理清一元一次方程与二元一次方程“解”的相关知识的异同,同时为二元一次方程组相关概念扫清障碍。
9.解二元一次方程组教学反思 篇九
自我接任七年级数学班以后,在校长的大力支持下,和学校的教学方针指导下,我校自创了“情景引入―精讲―精练―总结―反思―当堂测试”教学模式,自使用以来我始终坚持学校教学模式,虽然使用一年,但还不太熟练,但却感到受益菲浅。
我校新型教学模式的确定,实际上是针对学习对象需求而确定的。是以学生个别化自主学习为主,教师讲授为辅。在此模式下,只有积极发挥教师主导作用,才能确立学生学习主体作用,所以教师理论扎实、必须科学设计、精心实施,使其成为最优化的教学体系。在教学行动中加大引导,相互探究;使学生在自觉和不自觉的学习活动中,达到对已有知识结构的丰富和优化。教师应当按照课程标准对学生进行课程辅导,精讲重难点问题,并答疑解惑,消除学生在自学过程中建构知识时存在的盲点和误区。只有夯实理论基础,学生才能进一步将这些知识与社会中发生的典型案例相结合,达到理论联系实际,提高分析能力的目的。
本课的设计是从代入消元法解二元一次方程组求解问题人手,激发学生的学习兴趣与民族自豪感,让学生经历从不同角度寻求不同的解决方法的过程,体现出解决问题策略的多样性,激发了学生的学习兴趣。以消元为思想,观看相同未知数的系数相等或相反,利用等式的性质消元,重点探究怎么消元,为什么这样消元,使学生感到利用加减消元有时能解二元一次方程组更为简单,这样学生接受新知就顺理成章。
10.二元一次方程 -数学教案 篇十
【知识目标】了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。【能力目标】通过讨论和练习,进一步培养学生的观察、比较、分析的能力。
【情感目标】通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。【重点】二元一次方程组的含义
【难点】判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。【教学过程】
一、引入、实物投影
1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?
2、请每个学习小组讨论(讨论2分钟,然后发言)
【二元一次方程知识点总结】推荐阅读:
最新人教版:二元一次方程知识点总结及练习05-11
“二元一次方程组”简介10-04
二元一次方程趣味题10-09
人教版二元一次方程组03-12
二元一次方程组活动课06-28
10.3解二元一次方程组07-03
二元一次方程组的教案07-06
解二元一次方程组教学设计06-26
二元一次方程组数学说课稿02-05
一次函数与二元一次方程组教学反思02-11