初一一元一次方程课件

2025-03-19|版权声明|我要投稿

初一一元一次方程课件(共14篇)(共14篇)

1.初一一元一次方程课件 篇一

一元一次方程简单课件

教学内容:

人教版七年级上册3.1.1一元一次方程

教学目标:

知识与技能:

1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

过程与方法:

在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用

新知识解决实际问题的能力。

情感态度和价值观:

让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。

教学重点:

建立一元一次方程的概念,寻找相等关系,列出方程。

教学难点:

根据具体问题中的相等关系,列出方程。

教学准备:

多媒体教室,配套课件。

教学过程:

设计理念:

数学教学要从学生的经验和已有的知识出发,创设有助于学生自主学习的问题情景,在数学教学活动中要创造性地使用数学教材。课程标准的建议要求教师不再是“教教材”而是“用教材”。本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热情等方面做了有益的探索,现就几个教学片断进行探讨。

一、游戏导入,设置悬念

师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是2006年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。

生1:24,师:2,3,9,10生2:84师:17,18,24,2

5师:同学们想学会这个魔术吗?生:想!

师:通过这节课的学习,同学们一定能学会!

【一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。】

二、突出主题,突出主体

1、师:看大屏幕,独立思考下列问题,根据条件列出式子。

(1)x的2倍与3的差是5,(2)长方形的的长为a,宽比长少5,周长为36,则=36

(3)A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的1.5倍,经过t小时相遇,则=180

生:(1)2x-3=5(2)2(a+a-5)=36(3)30t+1.5(30t)=180

师:这些式子小学学习过,它们是()?生:方程。

师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)

【这又是一个变化,从小学已有知识出发,提前给出方程的概念,避免课堂中的逻辑矛盾,同时为学习列方程打下基础。】

2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:

(1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?

(2)什么叫一元一次方程?

(3)什么是的解?你找到验证的方法吗?

师:在阅读P/80例题1时老师做出友情提示:

(1)选择一个未知数x

(2)对于这三个问题,分别考虑:

用含x的未知数分别表示正方形的边长;

用含x的未知数表示这台计算机的检修时间;

用含x的未知数分别表示男、女生人数。

(3)找一个问题中的相等关系列出方程

学生讨论出上述答案后

师:大屏幕显示上述问题的答案

【以前我在上这节课时,总是犯了和大多数老师一样的毛病,担心内容多,学生自己不会弄懂,满堂灌,结果我讲的筋疲力尽,学生还是糊里糊涂;这次我放开手,让学生自主学习,带着问题学习,和同学合作学习,结果学生情绪高涨,问题迎刃而解,重点内容也都清晰化。这一变化,把我彻底从课堂解放出来,再不是学生心中“喋喋不休”的数学老师了,真正做到了学生学得愉快,老师教得轻松!】

三、体现新时代教师是学生学习的合作者

在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。

师:(强调)

(1)方程两边表示的是同一个数;

(2)左右两边表示的方法不同。

【这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础】

四、给学生一个展示自己精彩的舞台

师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?

设任意框出的四个数字的第一个为x,则:

生1:x+(x+1)+(x+7)+(x+8)=24;

生2:x+(x+1)+(x+7)+(x+8)=8

4师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。

【题目略,题目设计主要是列方程,并要求学生划出列方程的一个相等关系;检验一个数值是不是方程的解。这次的舞台大展示,教师仍然改掉以前的在学生旁边指手画脚的坏毛病,让学生一口气做完,让他们胆大地出错,暴露问题,然后师生一起纠正答案,效果比以前好了N倍!】

五、我的课堂,我做主,我来说

生1我掌握方程的概念:含有未知数的等式叫方程,即①有未知数②是等式;

生2:我掌握一元一次方程的概念:等式两边只含有一个未知数,并且未知数的次数都是1;

生3:我会检查一个数值是不是方程的解;

生4:我知道列方程的关键是找一个包含题目意思的相等关系并且等式左右两边是同一个量的两种不同种表达方式!

生5:我觉得用方程解决实际应用问题比以前小学的算术法来得简单!

师:谢谢你们精彩的发言,你们的发言是“五语道破其他人”!

【课堂小结一改教师全盘包办,学生没心没肺的听,心里还盼望着下课,盼望着游戏的课间。学生的课堂,让学生自己说,让学生把掌握的数学知识用自己的语言说出来,也可以训练他们把符号语言转化为文字语言,为以后学习几何学知识打下深厚的基础!】

六、课后反思:

数学课堂中的阅读和其它学科中的阅读一样重要,在课堂中我们要指导学生对概念性的东西进行阅读,帮助他们从句子中提炼出概念的内涵和外延,让他们能把书中的语言文字转化成自己的思想。所以我在教“一元一次方程的概念”的时候,要求学生自己读教材,然后和同学相互讨论,以便引起思维的碰撞。只有学生在充分读书的基础上,学生才能明白关健词的含义:只含有一个未知数,并且未知数的最高次数是1的等式才是一元一次方程。只有使等式两边相等的未知数的值才是该方程的解。俗话说得好:书读百遍,其义自现。在数学课堂中,阅读对学生来说至关重要,它比起老师的“苦口婆心”的说教有效得多。

2.初一一元一次方程课件 篇二

一、性质:

等式的性质1: 等式两边都加( 或减) 同一个数( 或式子) ,结果仍相等.

等式的性质2: 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.

不等式性质1: 不等式两边都加上( 或减去) 同一个数( 或式子) ,不等号的方向不变.

不等式性质2: 不等式两边都乘( 或除以) 同一个正数,不等号的方向不变.

不等式性质3: 不等式两边都乘( 或除以) 同一个负数,不等号的方向改变.

二、解一元一次方程( 不等式) 的一般步骤及根据;

1. 去分母———等式( 不等式) 的性质2;

2. 去括号———分配律;

3. 移项———等式( 不等式) 的性质1;

4. 合并———分配律逆运算;

5. 系数化为1———等式的性质2( 根据实际情况用不等式性质2或3) ;

三、解一元一次方程( 不等式) 的注意事项:

1. 分母是小数时,先把分母转化为整数;

2. 去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分子为多项式时,去分母后分子各项应加括号;

3. 去括号时,不要漏乘括号内的项,不要混淆符号,带着符号一起乘括号里的每一项;

4. 移项时,切记要变号,不要丢项,在等号( 不等号) 两边分别有同类项时先合并再移项,以免丢项;

5. 系数化为1时,方程( 不等式) 两边同乘以系数的倒数或同除以系数,不要弄错符号( 不等式要注意改不符号的方向) ;

6. 具体解题的步骤根据实际情况具体分析,找到最佳解法.

四、解一元一次方程和一元一次不等式:

在实际解一元一次方程或不等式中容易出现的错误有: ⑴解一元一次方程( 不等式) 在等号( 不等号) 左右两边互相移项时要改变移动项的符号; ⑵解一元一次方程( 不等式) 在去括号中一个数与多项式相乘,去括号时,应将这个数与括号内的每一项相乘,括号前面是负号,去括号时括号内的每一项都要改变符号; ⑶化系数为“1”时不等式根据系数的正、负符号选用不等式性质2或3去进行化系数( 正数不改变不等号的方向、负数改变不等号的方向) .

3.应用一元一次方程打折销售课件 篇三

应用一元一次方程打折销售课件

导学目标

1.使学生经历探索打折销售中的已知量和末知量之间的相等关系,列出一元一次方程解简单的应用题;

2.使学生进一步了解列出一元一次方程解应用题这种代数方法及其步骤;培养学生的分析问题和解决问题的能力。

导学重点:用列方程的方法解决打折销售问题;

导学难点:是准确理解打折销售问题中的利润(利润率)、成本、销售价之间的关系。

温故

一件衣服标价是200元,现打7折销售。问:买这件衣服需要多少钱?若已知这件衣服的成本(进价)是115元,那么商家卖出这件衣赚了多少钱?

链接:

1、把下面的“折扣数”化成百分数“六折”“七五折”“八八折”

2、你是怎样理解某种商品打“六折”出售的??

公式:

利润=卖出价-成本价

(或者:利润=销售价-成本价)

利润率=利润成本×100%

(3).算一算:

1。原价100元的商品打8折后价格为元;

2。原价100元的商品提价40%后的价格为元;

3。进价100元的商品以150元卖出,利润是元,利润率是;

4.原价X元的商品打8折后价格为元;

5。原价X元的商品提价40%后的价格为元;

6。原价100元的商品提价P%后的价格为元;

7。进价A元的商品以B元卖出,利润是元,利润率是。

新知

例.一家商店将服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?

想一想:15元利润是怎样产生的?

拓展:一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这种夹克每件的成本价是多少元?

某服装商店以135元的价格售出两件衣服,按成本计算,第一件盈利25%,第二件亏损25%,则该商店卖这两件衣服总体上是赚了,还是亏了?这二件衣服的成本价会一样吗?算一算?

新知:

例1:某文艺团体为“希望工程”募捐组织了一次义演,售出1000张票,筹得票款6950元。学生票5元/张,成人票8元/张。问:售出成人和学生票各多少张?

问题一:上面的问题中包含哪些等量关系?

成人票数+学生票数=1000张(1)

成人票款+学生票款=6950元(2)

问题二:设售出的学生票为x张,填写下表

学生成人

票数/张

票款/元

设所得学生票款为y元,填写下表:

学生成人

票款/元

票数/张

根据相等关系成人票数+学生票数=1000张,列方程得:

如果票价不变,那么售出1000张票所得票款可能是6930元吗?为什么?

拓展:

1、小明用172元钱买了两种书,共10本,单价分别为18元、10元。每种书小明各买了多少本?

2.一班有40位同学,新年时开晚会,班主任到超市花了115元买果冻与巧克力共40个,若果冻每2个5元巧克力每块3元,问班主任分别买了多少果冻和巧克力?

4.初一一元一次方程课件 篇四

此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。

(2)等积变形问题。

此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。“等积变形”是以形状改变而体积不变为前提。常用等量关系为:

①形状面积变了,周长没变;②原料体积=成品体积。

(3)调配问题。

从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。这类问题要搞清人数的变化,常见题型有:

①既有调入又有调出;

②只有调入没有调出,调入部分变化,其余不变;③只有调出没有调入,调出部分变化,其余不变。

(4)行程问题。

要掌握行程中的基本关系:路程=速度×时间。

相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。甲走的路程+乙走的路程=全路程

追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

① 同时不同地:

甲的时间=乙的时间

甲走的路程-乙走的路程=原来甲、乙相距的路程

② 同地不同时:

甲的时间=乙的时间-时间差

甲的路程=乙的路程

环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

船(飞机)航行问题:相对运动的合速度关系是:

顺水(风)速度=静水(无风)中速度+水(风)流速度;逆水(风)速度=静水(无风)中速度-水(风)流速度。

车上(离)桥问题:

①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。

②车离桥指车头离开桥到车尾离开桥的一段路程。所走的路程为一个成长

③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长

④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长

行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。

(5)工程问题。

其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。

(6)溶液配制问题。

其基本数量关系是:溶液质量=溶质质量+溶剂质量;溶质质量=溶液中所含溶质的质量分数。这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。

(7)利润率问题。

其数量关系是:商品的利润=商品售价-商品的进价;商品利润率=商品利润/商品进价×100%,注意打几折销售就是按原价的百分之几出售。商品售价=商品标价×折扣率

(8)银行储蓄问题。

其数量关系是:利息=本金×利率×存期;本息=本金+利息,利息税=利息×利息税率。注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。

(9)数字问题。

要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。

(10)年龄问题其基本数量关系:

大小两个年龄差不会变。

这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。

(11)比例分配问题:

5.一元一次方程教案 篇五

1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

3.条件:一元一次方程必须同时满足4个条件:

(1)它是等式;

(2)分母中不含有未知数;

(3)未知数最高次项为1;

(4)含未知数的项的系数不为0.

第二节:解一元一次方程

一元一次方程解法的一般步骤:

使方程左右两边相等的未知数的值叫做方程的解。

一般解法:

(1)去分母:在方程两边都乘以各分母的最小公倍数;

(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)

(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

(4)合并同类项:把方程化成ax=b(a≠0)的形式;

第三节:用一元一次方程解决问题

(1)审题:认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系.

(2)找出等量关系:找出能够表示本题含义的相等关系.

(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.

(4)解方程:解所列的方程,求出未知数的值.

6.“一元一次方程”测试卷 篇六

A.4个B.5个C.10个D.12个

2. 服装店销售某款服装, 一件服装的标价为300元, 若按标价的八折销售, 仍可获利60元, 则这款服装每件的标价比进价多 () .

A.60元B.80元C.120元D.180元

3. 附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖, 外套依原价打六折出售, 衬衫和裤子依原价打八折出售, 服饰共卖出200件, 共得24 000元.若外套卖出x件, 则依题意可列出下列哪一个一元一次方程式? () .

4. 甲、乙、丙三家超市为了促销一种定价相同的商品, 甲超市先降价20%, 后又降价1 0%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算? () .

A.甲B.乙C.丙D.一样

5. 某商场将一款空调按标价的八折出售, 仍可获利10%, 若该空调的进价为2 000元, 则标价________元.

6.如图, 矩形ABCD中, AB=6, 第1次平移将矩形ABCD沿AB方向向右平移5个单位, 得到矩形A1B1C1D1, 第2次平移将矩形A1B1C1D1沿A1B1方向向右平移5个单位, 得到矩形A2B2C2D2, …, 第n次平移将矩形An-1Bn-1Cn-1Dn-1沿An-1Bn-1方向向右平移5个单位, 得到矩形AnBnCnD (nn>2) .

(1) 求AB1和AB2的长.

(2) 若ABn的长为56, 求n.

7.某地为了打造风光带, 将一段长为360 m的河道整治任务交给甲、乙两个工程队先后接力完成, 共用时20天, 已知甲工程队每天整治24 m, 乙工程队每天整治16 m.求甲、乙两个工程队分别整治了多长的河道.

8.剃须刀由刀片和刀架组成.某时期, 甲、乙两厂家分别生产老式剃须刀 (刀片不可更换) 和新式剃须刀 (刀片可更换) , 有关销售策略与售价等信息如下表所示:

某段时间内, 甲厂家销售了8 400把剃须刀, 乙厂家销售的刀片数量是刀架数量的50倍, 乙厂家获得的利润是甲厂家的两倍, 问这段时间内, 乙厂家销售了多少把刀架?多少片刀片?

参考答案

2.设这款服装的进价为x元, 由题意, 得300×0.8-x=60, 解得:x=180.

300-180=120, ∴这款服装每件的标价比进价多120元.故选C.

3.若外套卖出x件, 则衬衫和裤子卖出 (200-x) 件, 由题意得:

0.6×250x+0.8×125 (200-x) =24 000, 故选B.

4.设原价a元, 则降价后, 甲为:a (1-20%) (1-10%) =0.72a (元) , 乙为: (1-15%) 2a=0.722 5a (元) , 丙为: (1-30%) a=0.7a (元) , 所以, 丙最便宜.答案:C.

6. (1) ∵AB=6, 第1次平移将矩形ABCD沿AB方向向右平移5个单位, 得到矩形A1B1C1D1, 第2次平移将矩形A1B1C1D1沿A1B1方向向右平移5个单位, 得到矩形A2B2C2D2, …, ∴AA1=5, A1A2=5, A2B1=A1B1-A1A2=6-5=1,

∴AB1=AA1+A1A2+A2B1=5+5+1=11,

∴AB2的长为:5+5+6=16;

(2) ∵AB1=2×5+1=11, AB2=3×5+1=16, ∴ABn= (n+1) ×5+1=56, 解得:n=10.

7. 设甲队整治了x天, 则乙队整治了 (20-x) 天, 由题意, 得

∴甲队整治的河道长为24×5=120 (m) ;

乙队整治的河道长为16×15=240 (m) .

答:甲、乙两个工程队分别整治了120 m, 240 m.

24x+16 (20-x) =360, 解得:x=5, ∴乙队整治了20-5=15天,

8. 设这段时间内乙厂家销售了x把刀架.

依题意, 得 (0.55-0.05) ·50x+ (1-5) x=2× (2.5-2) ×8 400.

解得x=400.

销售出的刀片数=50×400=20 000 (片) .

7.《解一元一次方程》教案 篇七

儋州市兰洋中学 曹辉球

第1课时

教学目标

1.了解一元一次方程的概念。

2.掌握含有括号的一元一次方程的解法。

重点、难点

1.重点;解含有括号的一元一次方程的解法。2.难点;括号前面是负号时,去括号时忘记变号。

教学过程

一、复习提问

1.解下列方程:(1)5x-2=8(2)5+2x=4x 2.去括号法则是什么?“移项”要注意什么?

二、新授

一元一次方程的概念

前面我们遇到的一些方程,例如44x+64=328 3+x=(45+x)/3 y-5=2y+l 问:大家观察这些方程,它们有什么共同特征?(提示:观察未知数的个数和未知数的次数。)只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。

例1.判断下列哪些是一元一次方程

3x/4=1/2

3x-2

x/7-1/5=2x/3-l

5x2-3x+1=0

2x+y=l-3y 2/(x-1)=5 下面我们再一起来解几个一元一次方程。

例2.解方程(1).-2(x-1)=4(2)3(x-2)+1=x-(2x-1)方程(1)该怎样解?由学生独立探索解法,并互相交流

此方程既可以先去括号求解,也可以看作关于(x-1)的一元一次方程进行求解。

第(2)题可由学生自己完成后讲评,讲评时,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。

补充例题:解方程3x-[3(x+1)-(1+4)]=l 方程中有多重括号,你会解这个方程吗? 说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

三、巩固练习:练习,l、2、3。

四、小结

本节课我们学习了一元一次方程的概念,并学习了含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。

8.一元一次方程试讲稿 篇八

含有一个未知数并且未知数的次数是1的方程为一元一次方程

1、解题步骤(课本中有的)(1)审题、找等量关系

(2)设未知数x——直接设未知数;间接设未知数。(3)根据等量关系,列方程(5)解方程

(6)检验并作答——方程解的是否正确;结果是否符合事实

(人数不可能是小数);

2、找等量关系的技巧(1)把握题中基本量的关系

比如:行程问题中——速度*时间=路程;

价格问题中——单价*数量=总价等等。

(2)找到题中的关键字眼,如“和、差、倍、分”

具体例子:小明去书店买笔记本和铅笔,笔记本的价格是铅笔的2倍;这里就出现了关键字眼——倍数

(3)利用题目中的不变量

常见的不变量如“等积变形”——一个长方形的铁块变成一个正方体,这里体积就是不变量。

(4)用两种不同的方式来表达同一个量 这样才可以找出方程等号两边的等式

3、应用题的类型

(1)行程问题(相遇、追及、行船)(2)工程问题

(3)和、差、倍、分问题(4)调配问题(5)数字问题(6)销售利润问题(7)银行储蓄问题(8)年龄问题

4、专题练习

1、从甲地到乙地,步行比坐公交要快3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,求甲地到乙地的距离是多少千米?

9.一元一次方程中考考点透析 篇九

考点一方程解的概念

【分析】方程的解是使方程左、右两边相等的未知数的值,因此可将x=2代入原方程中求解.1

评注:当一个一元一次方程中含有多个字母时,通常表述为“关于x的方程”,此时这个字母x就是未知数,而其他字母应视作常数,当已知一元一次方程的解时,只需根据解的定义将解代入方程即可解决问题.

答案:

考点二一元一次方程的解法

去分母,得:8x-10=2x-1,

移项、合并,得:6x=9,

故选择B.

评注:(1)解一元一次方程时,通常按“去分母、去括号、移项、合并同类项、系数化为1”的步骤和顺序来做,但也不尽然,根据所给方程的特点,解方程时,上述有些变形步骤可能用不到,并且也不一定要按照上述顺序去做.要根据方程的形式灵活安排求解步骤.熟练后,步骤还可以合并简化.

(2)有关方程解的选择题,除了用直接法求解外,还可用代入检验法.如本题可把各选项中的数分别代入两个式子中进行计算,使之相等即为所求.

[热身训练2](2015·辽宁大连)方程3x+2(1-x)=4的解是().6

【答案】C.

考点三一元一次方程的应用

例3(2015·湖北潜江)清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈.若每小组7人,则余下3人;若每小组8人,则少5人.由此可知该班共有__名同学.

【分析】观察条件可知:本题中的学生总数与分的组数是不变的,则可分别设出其中一个量,再根据另一个量不变列出方程求解.

方法二:设分成了y个组,根据学生总数不变可得:7y+3=8y-5,解得y=8,所以7y+3=59.

应填“59”.

评注:本题属“盈不足”问题,它一般是按一个数目分配不够,按另一个数目分配有余,不论怎样分配,被分配的物品的总量不变,人数不变,只是分配方式的变化.所以“表示同一个量的两个不同代数式的值相等”是一个基本的等量关系.

例4(2015·湖北孝感)某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水__m3.

【分析】20m3时交40元,题中已知5月份交水费64元,即已经超过20m3,所以在64元水费中有两部分构成,列方程即可解答.

【解】设该用户居民5月份实际用水xm3,根据题意得20×2+(x-20)×3=64,解得x=28,故答案为28.

评注:列方程解决分段收费问题的关键是明确每一段的数量与价格,一般根据各段数量与价格乘积的和等于总费用来列方程.

例5(2015·山东泰州)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?

【分析】本题等量关系为:两次销售总价之和=进货总价×(1+45%),设每件衬衫降价x元,根据等量关系列方程即可求解.

【解】设每件衬衫降价x元,根据题意得:

解之,得x=20.

答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.

评注:销售问题涉及的量有标价、销售价、进价、折扣、利润率、利润等,它们之间的关系为:售价-进价=利润,标价×折扣率=售价,进价×利润率=利润,理解这些内容是列出方程的关键.

[热身训练3](2015·广西河池)联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.

(1)这两次各购进电风扇多少台?

()商场以元台的售价卖完这两批电风扇,商场获利多少元?

答案:()设第一次购进了x台,根据题意列方程,得150x=(150+30)(x-10),解得x=60,所以60-10=50,所以第一次购进了60台,第二次购进了50台;

(2)(250-150)×60+(250-180)×50=6000+3500=9500,所以商场两次共获利9500元.

10.《一元一次方程》教学反思 篇十

这一次的备课作了一些新的尝试,在认真看完教参之后,花了一天的时间重新思考:这一课要讲的是什么内容?要解决什么问题?用什么样的方法?有了一个大致的框架之后,才开始动笔写教案,把教学目标定位《七年级数学上册《解一元一次方程——移项》教学反思(2篇)》/p><

为:会运用移项把方程转化成x=a的形式;理解移项的依据;能尝试利用“表示同一个量的两个式子相等”来建立适当的方程。

课后,有这样几点感想:

1、对课中的问题(应用题)讲解比较粗浅,学生并没有达到理解、掌握相应的方法的程度。

2、对移项的讲解不够深入,应该用不同的颜色来突出某一项移动前后的变化,而且,以后可以尝试用以下的方法帮助学生分辨是否进行了移项,是否需要变号,即,以等号(=)为界线,移项则相当于“越界”,凡是“越界”的都需要变号,没有“越界”的则不需要变号。

3x+20=4x-25

3x-4x=-25-20

界线

我觉得应该能找到一种效果更好的方法帮助学生理解移项。

3、课上展示学生作业的机会太少了。这一点,毫无疑问是我课前准备不周到,原来是想请学生写在黑板上的,上课时才发现,黑板根本不够用。在以后的课前准备中,要把展示学生作业作为重要的一个内容来加以考虑。

4、关于板书,课前一直在想,板书是突出解方程的过程还是突出运用一元一次方程解应用题的过程,最终在上课的时候选择了前者,理由是,运用一元一次方程解应用题的过程不应该作为本节课教学的中点来加以强调,在之前的教学中已经强调过了。但是后来还是觉得有些不妥,毕竟,在学生的作业过程中,完整的解题过程是相当重要的,而对于聋生来说,不断的重复有助于学生更好地记住这些细节。

5、在后来的交流中,发现自己准备的练习没有形成层层递进的梯度,没有为学生设计一些有关移项的专项练习,这在以后的备课中要引起重视,即在教学过程中,应该设计一些帮助学生突破难点的专项练习。使课堂练习更有层次感,能满足更多学生的需求。

11.《一元一次方程》教学反思 篇十一

今天我讲了一节《含有字母系数的一元一次方程》本来在备课的时候准备的很充足,考虑到了学生在课堂上将出现的各种情况,开始讲的时候很顺利,学生的状态和他们的发言都很令我满意,但是在讲完例题,引导学生做名校密题、做练习时出现了问题,学生的做题速度与准确度与我的预想有一点差距。当时我有点着急,一看时间所剩不多,没有对学生在做题过程中所出现的问题进行及时解决,而留到自习再逐一解决。

我在备课的时候是这样设计的:首先对以前所学知识进行回顾,让学生在很自然的状态下从一元一次方程过度到含有字母系数的一元一次方程。其次,给出两道例题,让学生通过做例题和练习并从中总结出书上给的注意“方程两边同乘或除以的式子不能为零。”再次,引导全体同学做名校密题上的练习,并逐渐加深难度。最后,根据学生情况,分层次留作业。

对于本节课我的感受就是,当有人听课的时候太注重课堂的流程往往达不到预想的效果,与其讲究一些讲课的技巧,不如塌塌实实的讲一节课,真正做到把知识传授给学生才是讲课的根本。

12.一元一次方程的应用分类解析 篇十二

例1某个体商店第一天以每件10元的价格购进某种商品15件, 第二天又以每件12元的价格购进同种商品35件,然后以相同的价格卖出,如果商店销售这些商品时,至少要获得10%的利润,那么这种商品每件的最低销售价是多少?

解析根据题意,可设每件商品销售价为x元,则总售价为(15 + 35)x = 50x,进价 = 10 × 15 + 12 × 35 = 570元,利润为50x - 570,利润率为50x - 570/ 570× 100% = 10%, 解这个方 程,求出x的值即可.

方法点拨本题属于销售类型的问题, 熟悉各基本量间的关系,读懂题意,列出所需的表达式是解题的关键. 主要关系式有利润=售价-进价,利润率 =利润/进价× 100%.

拓展练习1

某种商品的价格是按获利25%计算出来的,后因库存积压和急需收回资金,决定降价出售,如果每件商品仍能获得10%的利润,试问应按售价的几折出售?

二、分段计费问题

例2某市按以下规定收取每月水费, 若每月每户用水不超过10立方米,则每立方米按10.2元收费;若超过10立方米,则超过部分每立方米按2元收费.如果某户居民上月所交水费的平均水价为每立方米10.6元,那么这户居民上月共用水多少立方米?

解析本题属于分段计费问题, 首先要判断出实际用水量有没有超过10立方米(即标准用水量).由平均水价是每立方米10.6元,可知,该用户上月的用水已经超过10立方米. 因此,可设该户居民上月共用x立方米,则这x立方米应分两段收费,一段是10.2x元,另一段是2(x - 10)元.又由题意可知,两段收费总共应是10.6x元,依此列出方程,解之即可.

技巧点拨分段计费问题, 由于每一部分的收费单价不同,所以首先应弄清是否分段收费,若分段分为几段,再列出相关的表达式,根据题目中所包含的相等关系,列出方程解答.

拓展练习2

国家规定个人发表文章, 出版著作所获稿费应纳税,其计算方法是:(1)稿费不高于800元不纳税;(2)稿费高于800元但不高于4000元应缴纳超过800元的那一部分的14%的税;(3)稿费高于4O00元应缴纳全部稿费的11.2%的税.今知王教授出版一本著作获得一笔稿费, 他缴纳了550元的税, 王教授这笔稿费是多少元?

三、规律探究问题

例3下列按一定规律排列的数构成一个数表:

(1) 用一方框按图1中的样子任意框住9个数, 若这9个数的和是549,求方框中最后一个数.

(2) 若用如图2所示的斜框任意框住9个数, 且9个数的和是360,则斜框中的第一个数是什么?

解析观察数表1、数表2可知:数表中的每一个数比它左边的数大3,比它右边的数小3,比它上面的数大24,比它下面的数小24. 根据这个规律,(1) 可设中间一个数为x,再用含x的式子表示出其他的数,从而可以列出方程:(x - 27) + (x + 27) + (x - 24) + (x + 24) + (x - 21) + (x + 21) + (x - 3) + (x + 3) + x = 549,解之即可;(2)可设中间一个数为y,类似的方法,可以列出方程:(y - 24) + (y + 24) + (y - 21) + (y + 21) + (y - 18) + (y + 18) + (y - 3) + (y + 3) + y = 360,解之即可.

技巧点拨解此类问题的关键是观察归纳出各个数之间的排列规律,列出所需的表达式,从而使问题得以解决.

拓展练习3

在如图的日历中, 任意圈出一竖列上相邻的三个数,设中间的数为a,则这三个数之和是多少? 若有类似的三个数之和为66,则这三个数分别是多少? 有没有这样的三个数之和等于47?

四、方案设计问题

例4某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元; 经精加工后销售,每吨利润涨至7500元.

当地一家农工商公司收购这种蔬菜140吨,该公司加工的生产能力是:如果对蔬菜进行粗加工,每天加工16吨;如果进行精加工, 每天可加工6吨. 但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天内将这批蔬菜全部加工和销售完毕,为此公司制定了三种可行方案:

方案一:将蔬菜全部进行粗加工;

方案二:尽可能多地对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接销售;

方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工, 并恰好15天完成.

你认为选择哪种方案获利最多? 为什么?

解析本题属于方案设计题,题目文字长,条件复杂,应仔细读题,将题目分为几段分析,关系不难找出. 方案一中, 140/ 16=.75 < 15天,可将140吨蔬菜全部加工完,则方案一16的利润是:(4500 × 140)元; 方案二中,15天精加工的吨数为15 × 6 = 90(吨 ),这说明还有 (140 - 90)吨需在市场上直接销售,因此,方案二的利润是(7500 × 90 + 1000 × 50)元;方案三则需求出精加工、粗加工各自的天数,若设将x吨蔬菜进行精加工,将(140 - x)吨进行粗加工,依据等量关系:精加工的天数 + 粗加工的天数 = 15,可列方程为:x /6+(140 - x) /16= 15, 具体求出后,比较其结果即可.

13.一元一次方程的解法复习 篇十三

教学目标:

1、强化与巩固一元一次方程的概念

2、掌握解一元一次方程的一般步骤,并能根据方程特点灵活运用。

3、寻找解方程过程中的易错点,提高计算的准确率

教学重点:

解一元一次方程的一般步骤

教学难点:

灵活运用一元一次方程的解法步骤,计算简化而准确

教学过程:

一、一元一次方程的概念

1、提问:什么是一元一次方程?它的标准形式是什么?最简形式是什么?它的解是什么?

(重点强调对元和次的理解,都是针对未知数而言,元是指方程中未知数的种类,次是指方程中未知数的最高次数)

2、完成ppt上的四道概念题

3、完成练习卷上的判断题第一题和填空题1、5二、一元一次方程的解法

1、一元一次方程的解法依据是什么?

2、一元一次方程解题的一般步骤是什么?

3、例1:找出下列解方程中的错误并指正。(见ppt)

4、例2:分数的基本性质是什么?(1)利用分数的基本性质(2)把下列式子中分母是小数的化为整数(3)解方程 x/0.7—(0.17—0.2x)/0.03=15、例

14.解一元一次方程教案 篇十四

教学过程

解一元一次方程来探究方程中含有括号的一元一次方程的解法.解方程2(x-2)-3(4x-1)=9(1-x).分析 方程中有括号,设法先去括号.解2x-4-12x + 3 = 9-9x,„„„„去括号

-10x-1 =9-9x,„„„„„„ 方程两边分别合并同类项

-10x + 9x = 1 + 9,„„„„„„ 移项

-x =10, „„„„„„„„合并同类项

x =-10.„„„„„„„„系数化为1

注意(1)括号前边是“-”号,去括号时,括号内各项都要变号;

(2)用分配律去括号时,不要漏乘括号内的项;

(3)-x =10,不是方程的解,必须把系数化为1,得x =-10,才是结果.从上面的解方程可知,解含有括号的一元一次方程的步骤是:

(1)去括号;

(2)移项;

(3)合并同类项;

(4)系数化为1.三、实践应用

例1 解方程:3(x-2)+1 = x-(2x-1).分析 方程中有括号,先去括号,转化成上节课所讲方程的特点,然后再解方程.解 去括号

3x-6 + 1 = x-2x + 1,合并同类项

3x-5 =-x + 1,移项

3x + x = 1 + 5,合并同类项

4x = 6,系数化为1

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com

上一篇:余世维有效沟通版下一篇:环保科普宣传标语

付费复制
学术范例网10年专业运营,值得您的信赖

限时特价:7.99元/篇

原价:20元
微信支付
已付款请点这里联系客服
欢迎使用微信支付
扫一扫微信支付
微信支付:
支付成功
已获得文章复制权限
确定
常见问题