第1次 多元函数的极限与连续练习题

2025-05-23|版权声明|我要投稿

第1次 多元函数的极限与连续练习题(精选3篇)

1.第1次 多元函数的极限与连续练习题 篇一

数学分析

第16章

多元函数的极限与连续

计划课时:

0 时

第16章

多元函数的极限与连续(1 0 时)

§ 1

平面点集与多元函数

一.平面点集:平面点集的表示: E{(x,y)|(x,y)满足的条件}.余集Ec.1.常见平面点集:

全平面和半平面 : {(x,y)|x0}, {(x,y)|x0}, {(x,y)|xa},{(x,y)|yaxb}等.⑵ 矩形域: [a,b][c,d], {(x,y)|x||y|1}.⑶ 圆域: 开圆 , 闭圆 , 圆环,圆的一部分.极坐标表示, 特别是 {(r,)|r2acos}和{(r,)|r2asin}.⑷ 角域: {(r,)|}.⑸ 简单域: X型域和Y型域.2.邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域.空心邻域和实心邻域 , 空心方邻域与集

{(x,y)|0|xx0| , 0|yy0|}的区别.3. 点与点集的关系(集拓扑的基本概念):

(1)内点、外点和界点:

内点:存在U(A)使U(A)E

集合E的全体内点集表示为intE,.外点:存在U(A)使U(A)E

界点:A的任何邻域内既有E的点也有不属于E的点。E的边界表示为E

集合的内点E, 外点E , 界点不定.例1 确定集E{(x,y)|0(x1)(y2)1 }的内点、外点集和边界.例2 E{(x,y)|0yD(x), x[ 0 , 1 ] } , D(x)为Dirichlet函数.确定集E的内点、外点和界点集.(2)(以凝聚程度分为)聚点和孤立点:

聚点:A的任何邻域内必有属于E的点。

孤立点:AE但不是聚点。孤立点必为界点.例3 E{(x,y)|ysin }.确定集E的聚点集.解

E的聚点集E[ 1 , 1 ].221x 2 4.区域:

(1)(以包含不包含边界分为)开集和闭集: intE E时称E为开集 , E的聚点集E时称E为闭集.intE 存在非开非闭集.(3)有界集与无界集:

(4)

点集的直径d(E): 两点的距离(P1 , P2).(5)

三角不等式:

|x1x2|(或|y1y2|)或(P1,P2)R2和空集为既开又闭集.(2)(以连通性分为)开区域、闭区域、区域:以上常见平面点集均为区域.(x1x2)2(y1y2)2 |x1x2||y1y2|.(P1,P3)(P2,P3)

二.R2中的完备性定理:

1. 点列的极限:

设Pn(xn , yn)R2, P0(x0 , y0)R2.PnP0的定义(用邻域语言)

定义1。

limn0,N,nNPnU(P0,)或(P0,Pn)

例4(xn , yn)(x0 , y0)xnx0, yny0,(n).例5 设P0为点集E的一个聚点.则存在E中的点列{ Pn }, 使limPnP0.n

2.R2中的完备性定理:

(1)Cauchy收敛准则:

.(2).闭域套定理:(3).聚点原理: 列紧性 ,Weierstrass聚点原理.(4)有限复盖定理:

三.二元函数:

1.二元函数的定义、记法、图象:

2.定义域: 例6 求定义域:

ⅰ> f(x,y)3.二元函数求值: 例7 例8 9x2y2x2y21;ⅱ> f(x,y)lny.2ln(yx1)yf(x,y)2x3y2, 求 f(1 , 1), f(1 ,).xf(x,y)ln(1x2y2), 求f(cos , sin).4.三种特殊函数: ⑴ 变量对称函数: f(x,y)f(y,x),例8中的函数变量对称.⑵ 变量分离型函数: f(x,y)(x)(y).例如

zxye2x3y, zxy2xy2, f(x,y)(xyy)(xyx)等.(xy)2 4 但函数zxy不是变量分离型函数.⑶ 具有奇、偶性的函数

四.n元函数

二元函数 推广维空间 记作R n

作业 P9—8.§ 2 二元函数的极限

一.二重极限

二重极限亦称为全面极限

1.二重极限

定义1 设f为定义在DR上的二元函数,P0为D的一个聚点,A是确定数 若 0,0,或

2PU0(P0,)D,f(P)A则limf(P)A

PP0(x,y)(x0,y0)limf(x,y)A

例1 用“”定义验证极限

(x,y)(2,1)lim(x2xyy2)7.xy20.例2 用“”定义验证极限 lim2x0xy2y0例3 x2y2,(x,y)(0,0),xyf(x,y)x2y2

0 ,(x,y)(0,0).f(x,y)0.(用极坐标变换)

P94 E2.证明

(x,y)(0,0)lim2.归结原则:

定理 1

limf(P)A, 

对D的每一个子集E , 只要点P0是E的聚点 , PP0PD就有limf(P)A.PP0PE

推论1

设E1D, P0是E1的聚点.若极限limf(P)不存在 , 则极限limf(P)也不存在.PP0PE1PP0PD

推论2

设E1,E2D, P0是E1和E2的聚点.若存在极限limf(P)A1,PP0PE1PP0PE2limf(P)A2, 但A1A2, 则极限limf(P)不存在.PP0PDPP0PD

推论3

极限limf(P)存在,  对D内任一点列{ Pn }, PnP0但PnP0, 数列{f(Pn)}收敛.通常为证明极限limf(P)不存在, 可证明沿某个方向的极限不存在 , 或证明沿某两个方向的极限PP0不相等, 或证明极限与方向有关.但应注意 , 沿任何方向的极限存在且相等  全面极限存在

例4 xy ,(x,y)(0,0), 证明极限limf(x,y)不存在.f(x,y)x2y2(x,y)(0,0)0 ,(x,y)(0,0).6 例二重极限具有与一元函数极限类似的运算性质.例6 求下列极限: ⅰ>

(x,y)(0,0)limsinxyx2ylim;ⅱ>;(x,y)(3,0)yx2y2 ⅲ>

3.极限(x,y)(0,0)limxy11ln(1x2y2);ⅳ> lim.22(x,y)(0,0)xyxy(x,y)(x0,y0)limf(x,y)的定义:

2定义2.设f为定义在DR上的二元函数,P0为D的一个聚点,若 M0,0,或

PU0(P0,)D,f(P)M则limf(P)

PP0(x,y)(x0,y0)limf(x,y)

其他类型的非正常极限,(x,y)无穷远点的情况.例7 验证(x,y)(0,0)lim1.222x3y二.累次极限

二次极限

1.累次极限的定义:

定义3.设Ex,EyR,x0,y0分别是Ex,Ey的聚点,二元函数f在集合ExEy上有定义。若对每一个yEyyy0存在极限limf(x,y)

记作(y)limf(x,y)

xx0xExx0xE若Llim(y)存在,则称此极限为二元函数f先对x后对y的累次极限

yy0yEy记作Llimlim(y)

简记Llimlim(y)

yy0xx0yEyxExyy0xx0例8 f(x,y)xy, 求在点(0 , 0)的两个累次极限.x2y2 7 例9 x2y2, 求在点(0 , 0)的两个累次极限.f(x,y)22xy11ysin, 求在点(0 , 0)的两个累次极限.yx例10 f(x,y)xsin2.二重极限与累次极限的关系:

⑴ 两个累次极限存在时, 可以不相等.(例9)⑵ 两个累次极限中的一个存在时, 另一个可以不存在.例如函数f(x,y)xsin1在点(0 , 0)的情况.y

⑶ 二重极限存在时, 两个累次极限可以不存在.例如例10中的函数, 由 , y)(0,0).可见全面极限存在 , 但两个累次极限均不存在.|f(x,y)|  |x||y|0 ,(x

⑷ 两个累次极限存在(甚至相等)

二重极限存在.(参阅例4和例8).综上 , 二重极限、两个累次极限三者的存在性彼此没有关系.但有以下确定关系.定理2 若二重极限

推论1 二重极限和两个累次极限三者都存在时 , 三者相等.推论1给出了累次极限次序可换的一个充分条件.推论2 两个累次极限存在但不相等时 , 二重极限不存在.但两个累次极限中一个存在 , 另一个不存在 

二重极限不存在.参阅⑵的例.(x,y)(x0,y0)limf(x,y)和累次极限limlimf(x,y)(或另一次序)都存在 , 则必相等.xx0yy0

作业提示: P99 1、2、4

§ 3 二元函数的连续性(4 时)

一. 二元函数的连续(相对连续)概念:由一元函数连续概念引入.1.连续的定义:

定义

用邻域语言定义相对连续.全面连续.函数f(x,y)有定义的孤立点必为连续点.例1 xy22 , xy0 ,22xy

f(x,y)m , x2y20.1m2证明函数f(x,y)在点(0 , 0)沿方向ymx连续.1 , 0yx2, x ,例2

f(x,y)

([1]P124 E4)0 , 其他.证明函数f(x,y)在点(0 , 0)沿任何方向都连续 , 但并不全面连续.函数的增量: 全增量、偏增量.用增量定义连续性.函数在区域上的连续性.2.二元连续(即全面连续)和单元连续 :

定义

(单元连续)

二元连续与单元连续的关系: 参阅[1]P132 图16—9.3.连续函数的性质: 运算性质、局部有界性、局部保号性、复合函数连续性.仅证复合函数连续性.二.二元初等函数及其连续性:

二元初等函数 , 二元初等函数的连续性.三.一致连续性: 定义.四.有界闭区域上连续函数的性质:

1.有界性与最值性.(证)

2.一致连续性.(证)

3.介值性与零点定理.(证)

Ex

[1]P136—137 1 ⑴—⑸,2,4,5;

P137—138

1,4.10

2.第1次 多元函数的极限与连续练习题 篇二

习题1.5 1.试用说法证明(1)1x在x0连续(2)sin5x在任意一点xa连续.证(1)0,要使|x,|x|221x210|2x22.由于22x22x,只需221x11x110|,故1x在x0连续.5(xa)2|.,取,则当|x|时有|1x5x5a2||sin(2)(1)0,要使|sin5xsin5a|2|cos由于2|cos取5x5a2||sin5(xa)2|5|xa|,只需5|xa|,|xa|5,5,则当|xa|时有|sin5xsin5a|,故sin5x在任意一点xa连续.2.设yf(x)在x0处连续且f(x0)0,证明存在0使得当|xx0|时f(x)0.证由于f(x)在x0处连续,对于f(x0)/2,存在存在0使得当|xx0|时f(x)f(x0)|f(x0)/2, 于是f(x)f(x0)f(x0)/2f(x0)/20.3.设f(x)在(a,b)上连续,证明|f(x)|在(a,b)上也连续,并且问其逆命题是否成立?证任取 x0(a,b),f在x0连续.任给0,存在0使得当|xx0|时|f(x)f(x0)|,此时||f(x)||f(x0)|||f(x)f(x0)|,故|f|在x0连续.其逆命题1,x是有理数不真,例如f(x)处处不连续,但是|f(x)|1处处连续.1,x是无理数4.适当地选取a,使下列函数处处连续: 2ln(1x), x1,1x,x0,(1)f(x)(2)f(x)aarccosx,x1.ax x0;解(1)limf(x)limx0x0x1x11x21f(0),limf(x)f(0)a1.x0x1x1(2)limf(x)limln(1x)ln2f(1),limf(x)limaarccosxaf(1)ln2,aln2.5.利用初等函数的连续性及定理3求下列极限:(1)limcosx1xx22xcoslimx1xxxcos01.(2)limxx2x.sin2xsin3x2sin2x(3)limex0sin3xelimx0e3.arctanlimx(4)limarctanxx8x124x8x124arctan14.1(5)limx(x13|x|x122x2)|x|2x2xx02lim(xx122x2)|x|limxxx03lim22x11/x12/xg(x)32.6.设limf(x)a0,limg(x)b,证明lim)f(x)xx0lim[(lnf(x))g(x)]a.a.bb证lim)f(x)xx0g(x)lim)exx0(lnf(x))g(x)exx0eblna7.指出下列函数的间断点及其类型,若是可去间断点,请修改函数在该点的函数值,使之称为连续函数:(1)f(x)cos(x[x]),间断点nZ,第一类间断点.(2)f(x)sgn(sinx),间断点n,nZ,第一类间断点.x,x1,(3)f(x)间断点x1,第一类间断点.1/2,x1.x1,0x1(4)f(x)间断点x1,第二类间断点.,1x2,sinx11,0x1,2x(5)f(x)x,1x2,间断点x2,第一类间断点.1,2x3.1x22

8.设yf(x)在R上是连续函数,而yg(x)在R上有定义,但在一点x0处间断.问函数h(x)f(x)g(x)及(x)f(x)g(x)在x0点是否一定间断?解h(x)f(x)g(x)在x0点一定间断.因为如果它在x0点连续,g(x)(f(x)g(x))f(x)将在x0点连续,矛盾.而(x)f(x)g(x)在x0点未必间断.例如f(x)0,g(x)D(x).

3.第1次 多元函数的极限与连续练习题 篇三

§1.7复变函数的极限和连续性 复变函数设E是非空点集.称映射f:E为复变函数,也可用wf(z)表示.若记zxiy,wuiv,则

wf(z)f(x,y)u(z)iv(z)u(x,y)iv(x,y).于是,复变函数wf(z)的极限、连续、一致连续等概念就是映射(u,v):E2的相应概念.有关映射的各种性质也对复变函数成立.重要注记由于xz2z2i,y,故一般将wf(z)理解为以z,为自变量的函数,即wf(z,)u(z,)iv(z,).以后将看到,这样 做会带来很多方便,并且具有“复风格”.习题1.7(P33)3,4,5.

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com

上一篇:城市建设工作会议汇报提纲下一篇:《亲爱的》观后感1400字

付费复制
学术范例网10年专业运营,值得您的信赖

限时特价:7.99元/篇

原价:20元
微信支付
已付款请点这里联系客服
欢迎使用微信支付
扫一扫微信支付
微信支付:
支付成功
已获得文章复制权限
确定
常见问题