高中数学新课程创新教学设计案例50篇 19 平面与平面垂直(精选3篇)
1.高中数学新课程创新教学设计案例50篇 19 平面与平面垂直 篇一
平面向量的数量积
教材分析
两个向量的数量积是中学代数以往内容中从未遇到过的一种新的乘法,它区别于数的乘法.这篇案例从学生熟知的功的概念出发,引出平面向量数量积的概念和性质及其几何意义,介绍向量数量积的运算律及坐标表示.向量的数量积把向量的长度和三角函数联系在一起,这为解决三角形的有关问题提供了方便,特别是能有效解决线段的垂直等问题.这节内容是整个向量部分的重要内容之一,对它的理解与掌握将直接影响向量其他内容的学习.这节内容的教学难点是对平面向量数量积的定义及运算律的理解和对平面向量数量积的应用.
教学目标
1.理解并掌握平面向量的数量积、几何意义和数量积的坐标表示,会初步使用平面向量的数量积来处理有关长度、角度和垂直的问题,掌握向量垂直的条件.
2.通过对数量积的引入和应用,初步体会知识发生、发展的过程和运用过程,培养学生的科学思维习惯.
任务分析
两个向量的数量积从形式和实质上都与数的乘法有区别,这就给理解和掌握这个概念带来了一些困难.在学习时,要充分让学生理解、明白两个向量的数量积是一个数量,而不是向量.两个向量的数量积的值是这两个向量的模与两个向量夹角余弦的乘积,其符号由夹角余弦值的正负而确定.
两向量的数量积“a·b”不同于两实数之积“ab”.
通过实例理解a·b=b·c与a=c的关系,a·b=0与a=0或b=0的关系,以及(a·b)c=a(b·c)与(ab)c=a(bc)的不同.
教学设计
一、问题情景
如图40-1所示,一个力f作用于一个物体,使该物体发生了位移s,如何计算这个力所做的功.由于图示的力f的方向与前进方向有一个夹角θ,真正使物体前进的力是f在物体前进方向上的分力,这个分力与物体位移的乘积才是力f做的功.即力f使物体位移x所做的功W可用下式计算.
W=|s||f|cosθ.
其中|f|cosθ就是f在物体前进方向上的分量,也就是力f在物体前进方向上正射影的数量.
问题:像功这样的数量值,它由力和位移两个向量来确定.我们能否从中得到启发,把“功”看成这两个向量的一种运算的结果呢?
二、建立模型
1.引导学生从“功”的模型中得到如下概念:
已知两个非零向量a与b,把数量|a||b|cosθ叫a与b的数量积(内积),记作a·b=|a||b|cosθ.其中θ是a与b夹角,|a|cosθ(|b|cosθ)叫a在b方向上(b在a方向上)的投影.
规定0与任一向量的数量积为0.
由上述定义可知,两个向量a与b的数量积是一个实数.
说明:向量a与b的夹角θ是指把a,b起点平移到一起所成的夹角,其中0≤θ≤π.当θ=时,称a和b垂直,记作a⊥b.为方便起见,a与b的夹角记作〈a,b〉. 2.引导学生思考讨论
根据向量数量积的定义,可以得出
(1)设e是单位向量,a·e=|a|cos〈a,e〉.(2)设a·b是非零向量,则a⊥b(3)a·a=|a|2,于是|a|=
a·b=0.
.(4)cos〈a,b〉=.(5)|a·b|≤|a||b|(这与实数|ab|=|a||b|不同).
三、解释应用 [例 题]
已知|a|=5,|b|=4,〈a,b〉=120°,求a·b. 解:a·b=|a||b|cos〈a,b〉=5×4×cos120°=-10. [练习]
1.已知|a|=3,b在a上的投影为-2,求:(1)a·b.
(2)a在b上的投影.
2.已知:在△ABC中,a=5,b=8,c=60°,求
四、建立向量数量积的运算律
·.
1.出示问题:从数学的角度考虑,我们希望向量的数量积运算,也能像数量乘法那样满足某些运算律,这样数量积运算才更富有意义.回忆实数的运算律,你能类比和归纳出向量数量积的一些运算律吗?它们成立吗?为什么?
2.运算律及其推导
已知:向量a,b,c和λ∈R,则(1)a·b=b·a(交换律). 证明:左=|a||b|cosθ=右.
(2)(λa)·b=λ(a·b)=a·(λb)(数乘结合律). 证明:设a,b夹角为θ,当λ>0时,λa与b的夹角为θ,∴(λa)·b=(λa)·|b|cosθ=λ|a||b|cosθ=λ(a·b); 当λ<0时,λa与b的夹角为(π-θ),∴(λa)·b=|λa||b|cos(π-θ)=-λ|a||b|(-cosθ)=λ|a||b|cosθ=λ(a·b);
当λ=0时,(λa)·b=0·b=0=λ(a·b). 总之,(λa)·b=λ(a·b); 同理a·(λb)=λ(a·b).(3)(a+b)·c=a·c+b·c(乘法对加法的分配律).
证明:如图40-2,任取一点O,作=a,=b,=c.
∵a+b(即)在c方向上的投影等于a,b在c方向上的投影的和,即
|a+b|cosθ=|a|cosθ1+|b|cosθ2,∴|c||a+b|cosθ=|c|(|a|cosθ1+|b|cosθ2)= |c||a|cosθ1+|c||b|cosθ2=c·a+c·b,∴(a+b)·c=a·c+b·c.
思考:(1)向量的数量积满足结合律,即(a·b)c=a(b·c)吗?(2)向量的数量积满足消去律,即如果a·b=c·b,那么a=c吗?
五、应用与深化 [例 题]
1.对实数a,b,有(a+b)=a+2ab+b,(a+b)(a-b)=a-b.类似地,对任意向量a,b,也有类似结论吗?为什么?
解:类比完全平方和公式与平方差公式,有
(a+b)2=a2+2a·b+b2,(a+b)·(a-b)=a2-b2. 其证明是:(a+b)=(a+b)·(a+b)= a·a+a·b+b·a+b·b= a2+2a·b+b2,2
2(a+b)·(a-b)=a·a-a·b+b·a-b·b= a2-b2. ∴有类似结论.
2.已知|a|=6,|b|=4,〈a,b〉=60°,求(a+2b)·(a-3b). 解:(a+2b)·(a-3b)= a2-3a·b+2b·a-6b2=
|a|-|a||b|cos60°-6|b|=-72.
3.已知|a|=3,|b|=4,且a与b不共线.当k为何值时,(a+kb)⊥(a-kb)? 解:(a+kb)⊥(a-kb),即(a+kb)·(a-kb)=0,即a2-k2b2=0,即9-k2×16=0,k=±. 2
2因此,当k=±时,有(a+kb)⊥(a-kb).
4.已知:正方形ABCD的边长为1,并且=a,=b,=c,求|a+b+c|.
解法1:∵a+b+c=++=2,∴|a+b+c|=2=2.
解法2:|a+b+c|2=(a+b+c)2=a2+b2+c2+2a·b+2a·c+2b·c=1+1+2+2×1×1×cos90°+2×1×
[练习]
1.|a|=4,|b|=3,(2a-3b)·(2a+b)=61,求a与b的夹角θ.
×
+2×1×
×
=8,∴|a+b+c|=2
.
2.在边长为2的正三角形ABC中,求
六、拓展延伸
·+·+·.
1.当向量a,b的夹角为锐角时,你能说明a·b的几何意义吗? 如图40-3,a·b,即以b在a上射影的长和a的长为两邻边的矩形面积(OA=OA1).
2.平行四边形是表示向量加法与减法的几何模型,如图40-4,=-
=+,.试说明平行四边形对角线的长度与两条邻边长度之间的关系.
3.三个单位向量a,b,c有相同终点且a+b+c=0,问:它们的起点连成怎样的三角形?
解法1:如图40-5,∵|a|=|b|=|c|=1,a+b+c=0,∴a+b=-c,∴(a+b)=(-c)2,2∴a2+b2+2a·b=c2,∴2|a|·|b|cos∠AOC=-1,cos∠AOC=,∠AOC=120°. 同理∠BOC=∠AOC=120°,故△AOB,△BOC,△BOC全等,∴AB=AC=BC,即该△ABC为等边三角形.
解法2:如图40-6,.
=c,=-a,=-b,由a+b+c=0,即=+
∵|a|=|b|=1,∴OADB为菱形.
又||=1,∴∠AOB=120°.
同理∠AOC=∠BOC=120°,…
4.在△ABC中,·=·=·,问:O点在△ABC的什么位置?
解:由同理⊥·,=⊥
·,即·(-)=0,即·=0,∴⊥,.故O是△ABC的垂心.
两角和与差的余弦
教材分析
这节内容是在掌握了任意角的三角函数的概念、向量的坐标表示以及向量数量积的坐标表示的基础上,进一步研究用单角的三角函数表示的两角和与差的三角函数.这些内容在高等数学、电功学、力学、机械设计与制造等方面有着广泛的应用,因此要求学生切实学好,并能熟练的应用,以便为今后的学习打下良好的基础. “两角差的余弦公式”在教科书中采用了一种易于教学的推导方法,即先借助于单位圆中的三角函数线,推出α,β,α-β均为锐角时成立.对于α,β为任意角的情况,教材运用向量的知识进行了探究.同时,补充了用向量的方法推导过程中的不严谨之处,这样,两角差的余弦公式便具有了一般性.
这节课的重点是两角差的余弦公式的推导,难点是把公式中的α,β角推广到任意角.
教学目标
1.通过对两角差的余弦公式的探究过程,培养学生通过交流,探索,发现和获得新知识的能力.
2.通过两角差的余弦公式的推导,体会知识的发生、发展的过程和初步的应用过程,培养学生科学的思维方法和勇于探索的科学精神.
3.能正确运用两角差的余弦公式进行简单的三角函数式的化简、求值和恒等式证明.
任务分析
这节内容以问题情景中的问题作为教学的出发点,利用单位圆中的三角函数线和平面向量的数量积的概念推导出结论,并不断补充推导过程中的不严谨之处.推导过程采用了从特殊到一般逐层递进的思维方法,学生易于接受.整个过程始终结合单位圆,以强调其直观性.对于公式中的α和β角要强调其任意性.数学中要注意运用启发式,切忌把结果直接告诉学生,尽量让学生通过观察、思考和探索,自己发现公式,使学生充分体会到成功的喜悦,进一步激发学生的学习兴趣,调动他们学习的积极性,从而使其自觉主动地学习.
教学过程
一、问题情景
我们已经学过诱导公式,如
可以这样来认识以上公式:把角α转动,则所得角α+的正弦、余弦分别等于cosα和-sinα.把角α转动π,则所得角α+π的正弦、余弦分别等于-sinα和-cosα. 由此,使我们想到一个一般性的问题:如果把角α的终边转动β(度或弧度),那么所得角α+β的正弦、余弦如何用α或β的正弦、余弦来表示呢? 出示一个实际问题:
右图41-1是架在小河边的一座吊桥的示意图.吊桥长AB=a(m),A是支点,在河的左岸.点C在河的右岸,地势比A点高.AD表示水平线,∠DAC=α,α为定值.∠CAB=β,β随吊桥的起降而变化.在吊桥起降的过程中,如何确定点B离开水平线AD的高度BE?
由图可知BE=asin(α+β).
我们的问题是:如何用α和β的三角函数来表示sin(α+β).如果α+β为锐角,你能由α,β的正弦、余弦求出sin(α+β)吗?
引导学生分析:事实上,我们在研究三角函数的变形或计算时,经常提出这样的问题:能否用α,β的三角函数去表示α±β的三角函数?为了解决这类问题,本节首先来探索α-β的余弦与α,β的函数关系式.
更一般地说,对于任意角α,β,能不能用α,β的三角函数值把α+β或α-β的三角函数值表示出来呢?
二、建立模型 1.探 究
(1)猜想:cos(α-β)=cosα-cosβ.(2)引导学生通过特例否定这一猜想.
例如,α=60°,β=30°,可以发现,左边=cos(60°-30°)=cos30°=-cos30°=-,右边=cos60°.显然,对任意角α,β,cos(α-β)=cosα-cosβ不成立.
(3)再引导学生从道理上否定这一猜想.
不妨设α,β,α-β均为锐角,则α-β<α,则cos(α-β)>cosα.又cosβ>0,所以cos(α-β)>cosα-cosβ. 2.分析讨论
(1)如何把α,β,α-β角的三角函数值之间建立起关系?要获得相应的表达式需要哪些已学过的知识?
(2)由三角函数线的定义可知,这些角的三角函数值都与单位圆中的某些有向线段有关系,那么,这些有向线段之间是否有关系呢?
3.教师明晰
通过学生的讨论,教师引导学生作出以下推理:
设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.
过点P作PM⊥x轴,垂足为M,那么,OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.
过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是
OM=OB+BM=OB+CP=OAcosα+APsinα= cosβcosα+sinβsinα. 4.提出问题,组织学生讨论
(1)当α,β,α-β为任意角时,上述推导过程还能成立吗?
若要说明此结果是否对任意角α,β都成立,还要做不少推广工作,可引导学生独立思考.
事实上,根据诱导公式,总可以把α,β的三角函数化为(0,)内的三角函数,再根据cos(-β)=cosβ,把α-β的余弦,化为锐角的余弦.因此,三、解释应用
[例 题]
1.求cos15°及cos105°的值.
分析:本题关键是将15°角分成45°与30°的差或者分解成60°与45°的差,再利用两角差的余弦公式即可求解.对于cos105°,可进行类似地处理,cos105°=cos(60°+45°).
2.已知sinα=的值.,α∈(,π),cosβ=-,且β是第三象限的角,求cos(α+β)分析:观察公式Cα+β与本题已知条件应先计算出cosα,cosβ,再代入公式求值.求cosα,cosβ的值可借助于同角三角函数的平方关系,并注意α,β的取值范围来求解.
[练习]
1.(1)求sin75°的值.
(2)求cos75°cos105°+sin75°sin105°的值.(3)化简cos(A+B)cosB+sin(A+B)sinB.(4)求cos215°-sin215°的值.
分析:对于(1),可先用诱导公式化sin75°为cos15°,再用例题1中的结果即可.对于(2),逆向使用公式Cα-β,即可将原式化为cos30°.对于(3),可以把A+B角看成一个整体,去替换Cα-β中的α角,用B角替换β角.
2.(1)求证:cos(-α)=sinα.
(2)已知sinθ=,且θ为第二象限角,求cos(θ-)的值.
(3)已知sin(30°+α)=,60°<α<150°,求cosα.
分析:(1)和(差)公式可看成诱导公式的推广,诱导公式是和(差)公式的特例.(2)在三角函数求值问题中,变角是一种常用的技巧,α=(30°+α)-30°,这样可充分利用题中已知的三角函数值.
3.化简cos(36°+α)cos(α-54°)+sin(36°+α)sin(α-54°).
分析:这里可以把角36°+α与α-54°均看成单角,进而直接运用公式Cα-β,不必将各式展开后再计算.
分析:本题是一道综合题,由于cos(α-β)=cosαcosβ+sinαsinβ,欲求cos(α-β)的值,只须将已知两式平方相加求出cosαcosβ+sinαsinβ即可.
四、拓展延伸
1.由任意角三角函数定义,可知角α,β的终边与单位圆交点的坐标均可用α,β的三角函数表示,即α-β角与导公式Cα-β呢?
教师引导学生分析:在平面直角坐标系xOy内作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则由向量数量积的概念,有
=(cosα,sinα),=(cosβ,sinβ).,两向量的夹角有关,那么能否用向量的有关知识来推·=||||cos(α-β)=cos(α-β).
由向量的数量积的坐标表示,有
·=cosαcosβ+sinαsinβ.
于是,有
cos(α-β)=cosαcosβ+sinαsinβ.
依据向量数量积的概念,角α-β必须符合0≤α-β≤π,即在此条件下,以上推导才是正确的.
由于α,β都是任意角,α-β也是任意角,因此,须研究α-β为任意角时,以上推导是否正确.
当α-β为任意角时,由诱导公式总可以找到一个角θ,θ∈[0,2π),使cosθ=cos(α-β).
若θ∈[0,π],则·=cosθ=cos(α-β);
若θ∈[π,2π],则2π-θ∈[0,π],且 ·=cos(2π-θ)=cosθ=cos(α-β).
于是,对于任意角α,β都有
2.教师提出进一步拓展性问题:本节问题情景中,涉及如何用sinα,sinβ,cosα,cosβ来表示sin(α+β)的问题,试探索与研究sin(α+β)的表达式.
两角和与差的正弦
教材分析
在这节内容中,公式较多,一旦处理不当,将成为学生学习的一种负担.针对这个特点,应充分揭示公式的内在联系,使学生理解公式的形成过程及其使用条件,在公式体系中掌握相关的公式.同时,通过练习使学生能够熟练地运用这些公式.当然,这些公式的基础是两角和差的余弦公式.通过诱导公式sin(-α)=sinα,sinπ(-α)=cosα(α为任意
-(α+β)]角),可以实现正、余弦函数间的转换,也可推广为sin(α+β)=cos[=cos[(-α)-β],sin(α-β)=[
-(α-β)]=cos[(-α)+β].借助于Cα+β和Cα-β即可推导出公式Sα+β和Sα-β.Cα+β,Cα-β,Sα+β和Sα-β四个公式的左边均为两角和与差的正、余弦,右边均为单角α,β的正、余弦形式.不同点为公式Sα+β,Sα-β两边的运算符号相同,Cα+β与Cα-β两边的运算符号相反.Sα+β与Sα-β中右边是两单角异名三角函数的乘积,而Cα-β与Cα+β的右边是两单角同名三角函数的乘积.
任务分析
这节课计划采用启发引导和讲练结合的教学方式,对三角函数中的每一个公式要求学生会推导,会使用,要求不但掌握公式的原形,还应掌握它们的变形公式,会把“asinx+bcosx”类型的三角函数化成一个角的三角函数.在课堂教学中,将采用循序渐进的原则,设计有一定梯度的题目,以利于培养学生通过观察、类比的方法去分析问题和解决问题的能力,培养学生良好的思维习惯.在教学中,及时提醒学生分析、探索、化归、换元、类比等常用的基本方法在三角变换中的作用.这节课的重点是准确、熟练、灵活地运用两角和差的正、余弦公式进行三角函数式的求值、化简和证明,难点是公式的变形使用和逆向使用.
教学目标 1.能用两角差的余弦公式导出两角和的余弦公式,两角和差的正弦公式,并了解各个公式之间的内在联系.
2.能运用两角和差的正、余弦公式进行三角函数式的化简、求值和证明.
3.通过公式的推导过程,培养学生的逻辑思维能力,同时渗透数学中常用的换元、整体代换等思想方法.
教学过程
一、问题情景
如图42-1,为了保持在道路拐弯处的电线杆OB的稳固性,要加一根固定钢丝绳,要求钢丝绳与地面成75°角.已知电线杆的高度为5m,问:至少要准备多长的钢丝绳?
设电线杆与地面接触点为B,顶端为O,钢丝绳与地面接触点为A. 在Rt△AOB中,如果能求出sin75°的值,那么即可求出钢丝绳的长度.75°角可表示成两个特殊角45°与30°的和,那么sin75°的值能否用这两特殊角的三角函数值来表示呢?
二、建立模型 1.探 究
已知cos(α-β)=cosαcosβ+sinαsinβ,则sin(α+β),sin(α-β)中的角及函数名与cos(α+β)和cos(α-β)有何关系? 通过诱导公式可实现正、余弦函数的转换,即sin(α+β)=推导以上公式的方法并不是唯一的,其他推导方法由学生课后自己探索. 3.分析公式的结构特征
Sα+β与Sα-β中两边的加减运算符号相同,右边为α与β角的异名三角函数的乘积.应特别注意公式两边符号的差异.
三、解释应用 [例题一]
已知sinα=-,且α为第四象限角,求sin(-α)cos(+α)的值.
分析:本题主要训练公式Sα-β与Sα+β的使用.
由sinα=-及α为第四象限角,可求出cosα=,再代入公式求值.
[练习一]
分析:1.(1)强调公式的直接运用,寻找所求角与已知角之间的关系,α=(30°+α)-30°,再利用已知条件求出cos(30°+α).
2.应注意三角形的内角之间的关系,C=π-(A+B),再由诱导公式cos(π-α)=-cosα,要求cosC即转化为求-cos(A+B).
3.应注意分析角之间的关系,2β=(α+β)-(α-β),因此,求cos2β还应求出sin(α-β)和cos(α+β).解此题时,先把α+β与α-β看成单角,然后把2β用这两个单角来表示.
4.该题是在已有知识的基础上进一步深化,引导学生分三步进行:(1)求出α+β角的某个三角函数值.(2)确定角的范围.(3)确定角的值.其中,求α+β的某个三角函数值时,应分清是求cos(α-β)还是求sin(α-β).
已知向量的坐标. =(3,4),若将其绕原点旋转45°到′→的位置,求点P′(x′,y′)解:设∠xOP=α,∵|OP|=5,∴cosα=,sinα=.
∵x′=5cos(α+45°)=5(cosαcos45°-sinαsin45°)=-,y′=5sin(α+45°)=5(sinαcos45°+cosαsin45°)=,∴P′ -,.
已知向量=(4,3),若将其绕原点旋转60°,-135°到
1,2的位置,求点P1,P2的坐标.
[例题三]
求下列函数的最大值和最小值.
(1)y=cosx-sinx.
(2)y=3sinx+4cosx.
(3)y=asinx+bcosx,(ab≠0). 注:(1),(2)为一般性问题,是为(3)作铺垫,推导时,要关注解题过程,以便让学生充分理解辅助角φ满足的条件.
(3)解:考查以(a,b)为坐标的点P(a,b),设以OP为终边的一个角为φ,则
[练习三]
求下列函数的最大值和最小值.(1)y=cosx-sinx.
(2)y=sinx-sin(x+)
(3)已知两个电流瞬时值函数式分别是I1=12sin(ωt-45°),I2=10sin(ωt+30°),求合成的正弦波I=I1+I2的函数式.
四、拓展延伸
出示两道延伸性问题,引导学生独立思考,然后师生共同解决.
1.已知三个电流瞬时值的函数式分别为I1=5sinωt,I2=6sin(ωt-60°),I3=10sin(ωt+60°),求它们合成后的电流瞬时值的函数式I=I1+I2+I3,并指出这个函数的振幅、初相和周期.
2.已知点P(x,y),与原点的距离保持不变绕原点旋转θ角到点P′(x′,y′)(如图42-2),求证:
三角形边和角关系的探索
教材分析
初中已研究过解直角三角形,这节所研究的正、余弦定理是解直角三角形知识的延伸与推广,它们都反映了三角形边、角之间的等量关系,并且应用正、余弦定理和三角形内角和定理,可以解斜三角形.正弦定理的推证运用了从特殊到一般的方法,把直角三角形中得到的边角关系式推广到锐角三角形,再推广到钝角三角形,进而得出一般性的结论.余弦定理的推证采用向量的数量积做工具,将向量的长度与三角形的边长、向量的夹角与三角形的内角联系起来.对于正、余弦定理的推论,除了这节课的证法之外,还有其他的一些推证方法.教材中还要求,在证明了正、余弦定理之后,让学生尝试用文字语言叙述两个定理,以便理解其实质.当然,就知识而言,正弦定理有三个等式,可视为三个方程;余弦定理的三个式子也可看成三个方程,每个方程中均有四个量,知道其中任意三个量便可求第四个量.
这节课的重点是正、余弦定理的证明,以及用正、余弦定理解斜三角形,难点是发现定理、推证定理以及用定理解决实际问题.
任务分析
这节内容是在初中对三角形有了初步认识的基础上,进一步研究三角形的边、角之间的等量关系.对正弦定理的推导,教材中采用了从特殊到一般的方法,逐层递进,学生易于接受,而余弦定理的证明采用了向量的方法.应用两个定理解三角形时,要分清它们的使用条件.将正、余弦定理结合起来应用,经常能很好地解决三角形中的有关问题.
教学目标
1.理解正、余弦定理的推证方法,并掌握两个定理. 2.能运用正、余弦定理解斜三角形.
3.理解并初步运用数学建模的思想,结合解三角形的知识,解决生产、生活中的简单问题.
教学设计
一、问题情景
1.A,B两地相距2558m,从A,B两处发出的两束探照灯光照射在上方一架飞机的机身上(如图43-1),问:飞机离两探照灯的距离分别是多少?
2.如图43-2,自动卸货汽车的车厢采用液压机构,设计时应计算油泵顶杆BC的长度.已知车厢的最大仰角为60°,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平的夹角为6°20′,AC长为1.40m,计算BC的长.(精确到0.01m)
问题:(1)图中涉及怎样的三角形?(2)在三角形中已知什么?求什么?
二、建立模型
1.教师引导学生分析讨论
在问题情景(1)中,已知在△ABC中,∠A=72.3°,∠B=76.5°,AB=2558m.求AC,BC的长.
组织学生讨论如何利用已知条件求出AC,BC的长度.(让学生思考,允许有不同的解法)
结论:如图40-3,作AD⊥BC,垂足为D.由三角函数的定义,知AD=AC·sinC,AD=AB·sinB.
由此可得AC·sinC=AB·sinB.
又由∠A,∠B的度数可求∠C的度数,代入上式即可求出AC的长度,同理可求BC的长度.
教师明晰:
(1)当△ABC为直角三角形时,由正弦函数的定义,得
(2)当△ABC为锐角三角形时,设AB边上的高为CD,根据三角函数的定义,得CD=asinB=bsinA,所以,同理
.(3)当△ABC为钝角三角形时,结论是否仍然成立?引导学生自己推出.(详细给出解答过程)
事实上,当∠A为钝角时,由(2)易知设BC边上的高为CD,则由三角函数的定义,得 CD=asinB=bsin(180°-A).
根据诱导公式,知sin(180°-A)=sinA,.∴asinB=bsinA,即.正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,即
.正弦定理指出了任意三角形中三条边与它对应角的正弦之间的一个关系式,描述了任意三角形中边、角之间的一种数量关系.
思考:正弦定理可以解决有关三角形的哪些问题? 2.组织学生讨论问题情景(2)
这一实际问题可化归为:已知△ABC的边AB=1.95,AC=1.4,夹角为6°20′,求BC的长. 组织学生讨论:能用什么方法求出BC?(学生有可能有多种不同的解法)
教师明晰:如果已知三角形的两边和夹角,这个三角形为确定的三角形,那么怎样去计算它的第三边呢?由于涉及边长及夹角的问题,故可以考虑用平面向量的数量积.(也可用两点间的距离公式)
如图,设=a,=b,=c,则c=a-b.
∵|c|2=c·c=(a-b)·(a-b)=a2+b2-2abcosC,∴c=a+b-2abcosC.
同理a2=b2+c2-2bccosA,b2=c2+a2-2accosB. 于是得到以下定理:
余弦定理 三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即
a2=b2+c2-2bccosA,b2=c2+a2-2accosB,c2=a2+b2-2abcosC.
思考:余弦定理可以解决一些怎样的解三角形问题? 3.进一步的问题
勾股定理指出了直角三角形中三边之间的等量关系,余弦定理则指出了一般三角形三边之间的等量关系,那么这两个定理之间存在怎样的关系?如何利用余弦定理来判断三角形是锐角三角形还是钝角三角形?
三、解释应用 [例 题] 2221.(1)已知:在△ABC中,A=32.0°,B=81.8°,a=42.9cm,解三角形.
(2)已知:在△ABC中,a=20cm,b=28cm,A=40°,解三角形.(角精确到1°,边长精确到1cm)
分析:(1)本题为给出三角形的两角和一边解三角形问题,可由三角形内角和定理先求出第三个角,再两次利用正弦定理分别求出另两边.
(2)本题给出了三角形的两边及其中一边的对角,于是可用正弦定理求出b边的对角B的正弦,sinB≈0.8999,但0<B<π,故B角有两个值(如图43-8),从而C角与c边的取值也有两种可能.学生在解题时容易丢掉一组解,应引导学生从图形上寻找漏掉的解.
2.(1)已知:在△ABC中,已知b=60cm,c=34cm,A=41°,解三角形.(角精确到1°,边长精确到1cm)
(2)已知:在△ABC中,a=134.6cm,b=87.8cm,c=161.7cm,解三角形.(角精确到1′).
分析:本例中的(1)题,给出了两边及其夹角,可先用余弦定理求出第三边,求其他两角时既可用余弦定理也可用正弦定理.(2)题给出了三边长,可先用余弦定理求出其中一角,然后同样既可用正弦定理,也可用余弦定理求出其他两角.
3.AB是底部B不可到达的建筑物,A为建筑物的最高点.设计一种测量建筑物高度AB的方法. 分析:由于建筑物的底部B是不可到达的,所以不能直接测量出建筑物的高.由解直角三角形的知识,只要能知道一点C到建筑物顶部A的距离CA,并能测出由点C观察A的仰角,就可以计算出建筑物的高.为了求出CA的长,可选择一条水平基线HG(如图43-9),使H,G,B三点在同一条直线上.在G,H两点用测角仪器测得A的仰角分别为α,β,设CD=a,测角仪器的高为h,则在△ACD中,由正弦定理,得-β),从而可求得AB=AE+h=ACsinα+h=[练习]
1.在△ABC中,已知下列条件,解三角形.(角精确到1°,边长精确到1cm)(1)A=45°,C=30°,c=10cm.(2)A=60°,B=45°,c=20cm.(3)a=20cm,b=11cm,B=30°.(4)c=54cm,b=39cm,c=115°.
2.在△ABC中,已知下列条件,解三角形.(角精确到0.1°,边长精确到0.1cm)(1)a=2.7cm,b=3.696cm,C=82.2°.(2)b=12.9cm,c=15.4cm,A=42.3°.(3)a=7cm,b=10cm,c=6cm.
四、拓展延伸
1.在△ABC中,有正弦定理
+h.,sin(α
这涉及比值的连等式.请探索并研究是一个什么样的量,并加以证明.
2.在△ABC中,已知三边的长为a,b,c,如何判定△ABC的形状? 3.已知:在△ABC中,a=60,b=50,A=38°,求B.(精确到1°)
分析:.∵0°<B<180°,∴B≈31°或B≈149°,但当B≈149°时,A+B=187°,这与A,B为三角形内角矛盾,故B角只能取31°. 由此题与例1中的(2)题的分析可以发现,在已知三角形两边及其一边对角解三角形时,在某些条件下会出现一解或两解的情形,那么会不会出现无解的情形呢?
(1)当A为钝角或直角,必须满足a>b才有解(a≤b无解),并且由sinB=计算B时,只能取锐角,因此,只有一解,如图43-10.
(2)当A为锐角时,①若a>b或a=b,则由sinB=解,如图40-11.
计算B时,只能取锐角的值,因此,只有一②若a<bsinA,则由sinB=,得sinB>1,因此,无解.如图43-12.
③若a=bsinA,则由sinB=,得sinB=1,即B为直角,故只有一解,如图43-13.
④若b>a>bsinA,则sinB<1,故B可取一个锐角和一个钝角的值,如图43-14.
思考:若已知三角形的两角和一边、三边、两边及其夹角来解三角形时,它们的解会是怎样的?
2.高中数学新课程创新教学设计案例50篇 19 平面与平面垂直 篇二
教材分析
这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键.
教学目标
1.通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义. 2.理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法.
3.通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系.
教学设计
一、问题情境 [演 示] 1.观览车的运动.
2.体操运动员、跳台跳板运动员的前、后转体动作. 3.钟表秒针的转动. 4.自行车轮子的滚动. [问 题]
1.如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角?
2.在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角? 3.钟表上的秒针(当时间过了1.5min时)是按什么方向转动的,转动了多大角? 4.当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角?
显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备.
二、建立模型
1.正角、负角、零角的概念
在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角.
2.象限角
当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限.
3.终边相同的角
在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即
390°=30°+360°,(k=1); -330°=30°-360°,(k=-1).
设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k=0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和.
三、解释应用 [例 题]
1.在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.(1)-150°.
(2)650°.
(3)-950°5′.
2.分别写出与下列角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素写出来.
(1)60°.(2)-21°.(3)363°14′. 3.写出终边在y轴上的角的集合.
解:在0°~360°范围内,终边在y轴上的角有两个,即90°,270°.因此,与这两个角终边相同的角构成的集合为
S1={β|β=90°+k·360°,k∈Z}={β|β=90°+2k·180°,k∈Z},而所有与270°角终边相同的角构成的集合为
S2={β|β=270°+k·360°,k∈Z}= {β|β=90°+(2k+1)·180°,k∈Z}. 于是,终边在y轴上的角的集合为
S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.
注:会正确使用集合的表示方法和符号语言. [练习]
1.写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.
(1)45°.(2)-30°.(3)420°.(4)-225°. 2.辨析概念.(分别用集合表示出来)
(1)第一象限角.(2)锐角.(3)小于90°的角.(4)0°~90°的角. 3.一角为30°,其终边按逆时针方向旋转三周后的角度数为.
4.终边在x轴上的角的集合为;终边在第一、三象限的角的平分线上的角集合为.
四、拓展延伸
1.若角α与β终边重合,则α与β的关系是;若角α与β的终边互为反向延长线,则角α与β的关系是.
2.如果α在第二象限时,那么2α,是第几象限角?
注:(1)不能忽略2α的终边可能在坐标轴上的情况.
(2)研究在哪个象限的方法:讨论k的奇偶性.(如果是呢?)
任意角的三角函数
教材分析
这节课是在初中学习的锐角三角函数的基础上,进一步学习任意角的三角函数.任意角的三角函数通常是借助直角坐标系来定义的.三角函数的定义是本章教学内容的基本概念和重要概念,也是学习后续内容的基础,更是学好本章内容的关键.因此,要重点地体会、理解和掌握三角函数的定义.在此基础上,这节课又进一步研讨了三角函数的定义域,函数值在各象限的符号,以及诱导公式
(一),这既是对三角函数的简单应用,也是为学习后续内容做了必要准备.
教学目标
1.让学生认识三角函数推广的必要性,经历三角函数的推广的过程,增强对数的理解能力.
2.理解和掌握三角函数的定义,在此基础上探索与研究三角函数定义域、三角函数值的符号和诱导公式
(一),并能初步应用它们解决一些问题.
3.通过对任意角的三角函数的学习,初步体会数学知识的发生、发展和运用的过程,提高学生的科学思维水平.
教学设计
一、情景设置
初中我们学习过锐角三角函数,知道它们都是以锐角为自变量,由其所在的直角三角形的对应边的比值为函数值,并且定义了角α的正弦、余弦、正切、余切的三角函数.这节课,我们研究当α是一个任意角时的三角函数的定义.
在初中,三角函数的定义是借助直角三角形来定义的.如图32-1,在Rt△ABC中,现在,把三角形放到坐标系中.如图32-2,设点B的坐标为(x,y),则OC=b=x,CB=a=y,OB=,从而
即角α的三角函数可以理解为坐标的比值,在此意义下对任意角α都可以定义其三角函数.
二、建立模型
一般地,设α是任意角,以α的顶点O为坐标原点,以角α的始边的方向作为x轴的正方向,建立直角坐标系xOy.P(x,y)为α终边上不同于原点的任一点.如图:
那么,OP=,记作r,(r>0).
对于三个量x,y,r,一般地,可以产生六个比值:.当α确定时,根据初中三角形相似的知识,可知这六个比值也随之相应的唯一确定.根据函数的定义可以看出,这六个比值都是以角为自变量的函数,分别把角的正弦、余弦、正切、余切、正割和余割函数,记为
称之为α
对于定义,思考如下问题:
1.当角α确定后,比值与P点的位置有关吗?为什么?
2.利用坐标法定义三角函数与利用直角三角形定义三角函数有什么关系? 3.任意角α的正弦、余弦、正切都有意义吗?为什么?
三、解释应用 [例 题]
1.已知角α的终边经过P(-2,3),求角α的六个三角函数值. 思考:若P(-2,3)变为(-2m,3m)呢?(m≠0)2.求下列角的六个三角函数值.
注:强化定义. [练习]
1.已知角α的终边经过下列各点,求角α的六个三角函数值.(1)P(3,-4).(2)P(m,3). 2.计 算.
(1)5sin90°+2sin0°-3sin270°+10cos180°.
四、拓展延伸 1.由于角的集合与实数集之间可以建立一一对应的关系,三角函数可以看成以实数为自变量的函数,如sina=,不论α取任何实数,恒有意义,所以sina的定义域为{α|α∈R}.类似地,研究cosa,tana,cota的定义域.
2.根据三角函数的定义以及x,y,r在不同象限内的符号,研究sina,cosa,tana,cota的值在各个象限的符号.
3.计算下列各组角的函数值,并归纳和总结出一般性的规律.(1)sin30°,sin390°.
(2)cos45°,cos(-315°).
规律:终边相同的角有相同的三角函数值,即sin(α+k360°)=sina,cos(α+k·360°)=cosa,tan(α+k·360°)=tana,(k∈Z).
五、应用与深化 [例 题]
1.确定下列三角函数值的符号.
2.求证:角α为第三象限角的充要条件是sinθ<0,并且tanθ>0. 证明:充分性:如果sinθ<0,tanθ>0都成立,那么θ为第三象限角.
∵sinθ<0成立,所以θ的终边可能位于第三或第四象限,也可能位于y轴的负半轴上. 又∵tanθ>0成立,∴θ角的终边可能位于第一或第三象限. ∵sinθ<0,tanθ>0都成立,∴θ角的终边只能位于第三象限.
必要性:若θ为第三象限角,由三角函数值在各个象限的符号,知sinθ<0,tanθ>0. 从而结论成立. [练习]
1.设α是三角形的一个内角,问:在sina,cosa,tana,tan取负值?为什么?
中,哪些三角函数可能2.函数 的值域是 ____________ .
同角三角函数的基本关系式
教材分析
这节课主要是根据三角函数的定义,导出同角三角函数的两个基本关系式sina+cosa=1与=1与,并初步进行这些公式的两类基本应用.教学重点是公式sina+cosa的推导及以下两类基本应用:
2(1)已知某角的正弦、余弦、正切中的一个,求其余两个三角函数.(2)化简三角函数式及证明简单的三角恒等式.
其中,已知某角的一个三角函数值,求它的其余各三角函数值时,正负号的选择是本节的一个难点,正确运用平方根及象限角的概念是突破这一难点的关键;证明恒等式是这节课的另一个难点.课堂上教师应放手让学生独立解决问题,优化自己的解题过程.
教学目标
1.让学生经历同角三角函数的基本关系的探索、发现过程,培养学生的动手实践、探索、研究能力.
2.理解和掌握同角三角函数的基本关系式,并能初步运用它们解决一些三角函数的求值、化简、证明等问题,培养学生的运算能力,逻辑推理能力.
3.通过同角三角函数基本关系的学习,揭示事物之间的普遍联系规律,培养学生的辩证唯物主义世界观.
任务分析 这节课的主要任务是引导学生根据三角函数的定义探索出同角三角函数的两个基本关系式:sin2a+cos2a=1及,并进行初步的应用.由于该节内容比较容易,所以,课堂上无论是关系式的探索还是例、习题的解决都可以放手让学生独立完成,即由学生自己把要学的知识探索出来,并用以解决新的问题.必要时,教师可以在以下几点上加以强调:(1)“同角”二字的含义.(2)关系式的适用条件.(3)化简题最后结果的形式.(4)怎样优化解题过程.
教学设计
一、问题情境
教师出示问题:上一节内容,我们学习了任意角α的六个三角函数及正弦线、余弦线和正切线,你知道它们之间有什么联系吗?你能得出它们之间的直接关系吗?
二、建立模型
1.引导学生写出任意角α的六个三角函数,并探索它们之间的关系
在角α的终边上任取一点P(x,y),它与原点的距离是r(r>0),则角α的六个三角函数值是
2.推导同角三角函数关系式
引导学生通过观察、分析和讨论,消元(消去x,y,r),从而获取下述基本关系.(1)平方关系:sin2a+cos2a=1.
(2)商数关系:t:
说明:①当放手让学生推导同角三角函数的基本关系时,部分学生可能会利用三角函数线,借助勾股定理及相似三角形的知识来得出结论.对于这种推导方法,教师也应给以充分肯定,并进一步引导学生得出|sinα|+|cosα|≥1.
②除以上两个关系式外,也许部分学生还会得出如下关系式:.教师点拨:这些关系式都很对,但最基本的还是(1)和(2),故为了减少大家的记忆负担,只须记住(1)和(2)即可.以上关系式均为同角三角函数的基本关系式.
教师启发:(1)对“同角”二字,大家是怎样理解的?(2)这两个基本关系式中的角α有没有范围限制?
(3)自然界的万物都有着千丝万缕的联系,大家只要养成善于观察的习惯,也许每天都会有新的发现.刚才我们发现了同角三角函数的基本关系式,那么这些关系式能用于解决哪些问题呢?
三、解释应用 [例 题]
1.已知sinα=,且α是第二象限角,求角α的余弦值和正切值.
2.已知tanα=-,且α是第二象限角,求角α的正弦和余弦值.
说明:这两个题是关系式的基本应用,应让学生独立完成.可选两名同学到黑板前板书,以便规范解题步骤.
变式1 在例2中若去掉“且α是第二象限角”,该题的解答过程又将如何? 师生一起完成该题的解答过程.
解:由题意和基本关系式,列方程组,得
由②,得sinα=-
cosα,代入①整理,得6cos2α=1,cos2α=
.
∵tanα=-<0,∴角α是第二或第四象限角.
当α是第二象限角时,cosα=-,代入②式,得;
当α是第四象限角时,cosα=,代入②式,得.小结:由平方关系求值时,要涉及开方运算,自然存在符号的选取问题.由于本题没有具体指明α是第几象限角,因此,应针对α可能所处的象限,分类讨论.
变式2 把例2变为:
已知tanα=-,求的值.
解法1:由tanα=-及基本关系式可解得
针对两种情况下的结果居然一致的情况,教师及时点拨:
观察所求式子的特点,看能不能不通过求sinα,cosα的值而直接得出该分式的值. 学生得到如下解法:
由此,引出变式3.
已知:tanα=-,求(sinα-cosα)2的值.
有了上一题的经验,学生会得到如下解法:
教师归纳、启发:这个方法成功地避免了开方运算,因而也就避开了不必要的讨论.遗憾的是,因为它不是分式形式,所以解题过程不像“变式2”那样简捷.那么,能解决这一矛盾吗?
学生得到如下解法:
教师引导学生反思、总结:(1)由于开方运算一般存在符号选取问题,因此,在求值过程中,若能避免开方的应尽量避免.
(2)当式子为分式且分子、分母都为三角函数的n(n∈N且n≥1)次幂的齐次式时,采用上述方法可优化解题过程.
[练习]
当学生完成了以上题目后,教师引导学生讨论如下问题:
(1)化简题的结果一定是“最简”形式,对三角函数的“最简”形式,你是怎样理解的?(2)关于三角函数恒等式的证明,一般都有哪些方法?你是否发现了一些技巧?
四、拓展延伸
教师出示问题,启发学生一题多解,并激发学生的探索热情.
已知sinα-cosα=-,180°<α<270°,求tanα的值.
解法1:由sinα-cosα=-,得
反思:(1)解法1的结果比解法2的结果多了一个,看来产生了“增根”,那么,是什么原因产生了增根呢?
(2)当学生发现了由sinα-cosα=-α的范围变大了时,教师再点拨:
怎样才能使平方变形是等价的呢? 由学生得出如下正确答案:
得到sin2α-2sinαcosα+cos2α=的过程中,∵180°<α<270°,且sinα-cosα=-cosα|,因此|tanα|>1,只能取tanα=2.
<0,∴sinα<0,cosα<0,且|sinα|>|强调:非等价变形是解法1出错的关键!
诱导公式 教材分析
这节内容以学生在初中已经学习了锐角的三角函数值为基础,利用单位圆和三角函数的定义,导出三角函数的五组诱导公式,即有关角k·360°+α,180°+α,-α,180°-α,360°-α的公式,并通过运用这些公式,把求任意角的三角函数值转化为求锐角的三角函数值,从而渗透了把未知问题化归为已知问题的化归思想.这节课的重点是后四组诱导公式以及这五组公式的综合运用.把这五组公式用一句话归纳出来,并切实理解这句话中每一词语的含义,是切实掌握这五组公式的难点所在.准确把握每一组公式的意义及其中符号语言的特征,并且把公式二、三与图形对应起来,是突破上述难点的关键.
教学目标
1.在教师的引导下,启发学生探索发现诱导公式及其证明,培养学生勇于探求新知、善于归纳总结的能力.
2.理解并掌握正弦、余弦、正切的诱导公式,并能应用这些公式解决一些求值、化简、证明等问题.
3.让学生体验探索后的成功喜悦,培养学生的自信心.
4.使学生认识到转化“矛盾”是解决问题的有效途径,进一步树立化归思想.
任务分析
诱导公式的重要作用之一就是把求任意角的三角函数值转化为求锐角的三角函数值.在五组诱导公式中,关于180°+α与-α的诱导公式是最基本的,也是最重要的.在推导这两组公式时,应放手让学生独立探索,寻求“180°+α与角α的终边”及“-α与角α的终边”之间的位置关系,从而完成公式的推导.此外,要把90°~360°范围内的三角函数转化为锐角的三角函数,除了利用第二、四、五个公式外,还可以利用90°+α,270°±α与α的三角函数值之间的关系.应引导学生在掌握前五组诱导公式的基础上进一步探求新的关系式,从而使学生在头脑中形成完整的三角函数的认知结构.
教学设计
一、问题情境 教师提出系列问题
1.在初中我们学习了求锐角的三角函数值,现在角的概念已经推广到了任意角,能否把任意角的三角函数值转化为锐角的三角函数值呢?
2.当α=390°时,能否求出它的正弦、余弦和正切值? 3.由2你能否得出一般性的结论?试说明理由.
二、建立模型 1.分析1 在教师的指导下,学生独立推出公式
(一),即
2.应用1 在公式的应用中让学生体会公式的作用,即把任意角的三角函数值转化为0°~360°范围内的角的三角函数值.
练习:求下列各三角函数值.
(1)cos3.分析2 π.
(2)tan405°.
如果能够把90°~360°范围内的角的三角函数值转化为锐角的三角函数值,即可实现“把任意角的三角函数值转化为锐角的三角函数值”的目标.例如,能否将120°,240°,300°角与我们熟悉的锐角建立某种联系,进而求出其余弦值?
引导学生利用三角函数的定义并借助图形,得到如下结果:
cos120°=cos(180°-60°)=-cos60°=-,cos240°=cos(180°+60°)=-cos60°=-,cos300°=cos(360°+60°)=cos60°=4.分析3
.
一般地,cos(180°+α),cos(180°-α),cos(360°-α)与cosα的关系如何?你能证明自己的结论吗?由学生独立完成下述推导: 设角α的终边与单位圆交于点P(x,y).由于角180°+α的终边就是角α的终边的反向延长线,则角180°+α的终边与单位圆的交点P′与点P关于原点O对称.
由此可知,点P′的坐标是(-x,-y).
又∵单位圆的半径r=1,∴cosα=x,sinα=y,tanα=(180°+α)=-y,tan(180°+α)=从而得到:
.,cos(180°+α)=-x,sin
5.分析4 在推导公式三时,学生会遇到如下困难,即:若α为任意角,180°-α与角α的终边的位置关系不容易判断.这时,教师可引导学生借助公式二,把180°-α看成180°+(-α),即:先把180°-α的三角函数值转化为-α的三角函数值,然后通过寻找-α的三角函数值与α的三角函数值之间的关系,使原问题得到解决.
由学生独立完成如下推导:
如图,设任意角α的终边与单位圆相交于P(x,y),角-α的终边与单位圆相交于点P′.∵这两个角的终边关于x轴对称,∴点P′的坐标是(x,-y).又∵r=1,∴cos(-α)=x,sin(-α)=-y,tan(-α)=从而得到:
进而推出:
注:在问题的解决过程中,教师要注意让学生充分体验成功的快乐. 6.教师归纳
公式
(一)、(二)、(三)、(四)、(五)都叫作诱导公式,利用它们可以把k·360°+α,180°±α,-α,360°-α的三角函数转化为α的三角函数.那么,在转化过程中,发生了哪些变化?这种变化是否存在着某种规律?
引导学生进行如下概括:α+k·360°(k∈Z),-α,180°±α,360°-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.为了便于记忆,还可编成一句口诀“函数名不变,符号看象限”.
三、解释应用 [例 题]
1.求下列各三角函数值.
通过应用,让学生体会诱导公式的作用:
①把任意角的三角函数转化为锐角三角函数,其一般步骤为
评注:本题中,若代入cosα·cot3α形式,就须先求得cosα的值.由于不能确定角α所在象限,解题过程将变得烦锁.以此提醒学生注意选取合理形式解决问题.
四、拓展延伸
教师出示问题:前面我们利用三角函数的定义及对称性研究了角α+k·360°(k∈Z),-α,180°±α,360°-α的三角函数与角α的三角函数之间的关系,这些角有一个共同点,即:均为180°的整数倍加、减α.但是,在解题过程中,还会遇到另外的情况,如前面遇到的120°角,它既可以写成180°-60°,也可以写成90°+30°,那么90°+α的三角函数与α的三角函数有着怎样的关系呢?
学生探究:经过独立探求后,有学生可能会得到如下结果:
设角α的终边与单位圆交于点P(x,y),角90°+α的终边与单位圆交于点P′(x′,y′)(如图),则cosα=x,sinα=y,cos(90°+α)=x′,sin(90°+α)=y′. 过P作PM⊥x轴,垂足为M,过P′作P′M′⊥y轴,垂足为M′,则△OPM≌△OP′M′,∴OM=OM′,MP=M′P′,即x=y′,y=x′.
进而得到cos(90°+α)=sinα,sin(90°+α)=cosα.对此结论和方法,教师不宜作任何评论,而应放手让学生展开辩论和交流,最后得到正确结果:
由于OM与OM′,MP与M′P′仅是长度相等,而当点P在第一象限时,P′在第二象限,∴x′<0,y′>0,又∵x>0,y>0,∴x′=-y,y′=x. 从而得到:
教师进一步引导:
(1)推导上面的公式时,利用了点P在第一象限的条件.当点P不在第一象限时,是否仍有上面的结论?
(通过多媒体演示角α的终边在不同象限的情景,使学生理解公式六中的角α可以为任意角)
(2)推导公式六时,采用了初中的平面几何知识.是否也能像推导前五组公式那样采用对称变换的方式呢?
学生探究:学生先针对α为锐角时的情况进行探索,再推广到α为任意角的情形. 设角α的终边与单位圆交点为P(x,y),(如图).由于角α的终边经过下述变换:2(轴的对称点P′(-y,-x),∴x′=-y,y′=x.
+α的终边与单位圆的交点为P′(x′,y′)-α)+2a=,即可得到
+α的终边.这是两次对称变换,即先作P关于直线y=x的对称点M(y,x),再作点M关于y
由此,可进一步得到:
教师归纳:公式六、七、八、九也称作诱导公式,利用它们可以把90°±α,270°±α的三角函数转化为α的三角函数.
引导学生总结出:
90°±α,270°±α的三角函数值等于α的余名函数值,前面加上一个把α看成锐角时原函数值的符号.
3.高中数学新课程创新教学设计案例50篇 19 平面与平面垂直 篇三
教材分析
等差数列的前n项和是数列的重要内容,也是数列研究的基本问题.在现实生活中,等差数列的求和是经常遇到的一类问题.等差数列的求和公式,为我们求等差数列的前n项和提供了一种重要方法.
教材首先通过具体的事例,探索归纳出等差数列前n项和的求法,接着推广到一般情况,推导出等差数列的前n项和公式.为深化对公式的理解,通过对具体例子的研究,弄清等差数列的前n项和与等差数列的项、项数、公差之间的关系,并能熟练地运用等差数列的前n项和公式解决问题.这节内容重点是探索掌握等差数列的前n项和公式,并能应用公式解决一些实际问题,难点是前n项和公式推导思路的形成.
教学目标
1.通过等差数列前n项和公式的推导,让学生体验数学公式产生、形成的过程,培养学生抽象概括能力.
2.理解和掌握等差数列的前n项和公式,体会等差数列的前n项和与二次函数之间的联系,并能用公式解决一些实际问题,培养学生对数学的理解能力和逻辑推理能力.
3.在研究公式的形成过程中,培养学生的探究能力、创新能力和科学的思维方法.
任务分析
这节内容主要涉及等差数列的前n项公式及其应用.
对公式的推导,为便于学生理解,采取从特殊到一般的研究方法比较适宜,如从历史上有名的求和例子1+2+3+……+100的高斯算法出发,一方面引发学生对等差数列求和问题的兴趣,另一方面引导学生发现等差数列中任意的第k项与倒数第k项的和等于首项与末项的和这个规律,进而发现求等差数列前n项和的一般方法,这样自然地过渡到一般等差数列的求和问题.对等差数列的求和公式,要引导学生认识公式本身的结构特征,弄清前n项和与等差数列的项、项数、公差之间的关系.为加深对公式的理解和运用,要强化对实例的教学,并通过对具体实例的分析,引导学生学会解决问题的方法.特别是对实际问题,要引导学生从实际情境中发现等差数列的模型,恰当选择公式.对于等差数列前n项和公式和二次函数之间的联系,可引导学生拓展延伸.
教学设计
一、问题情景
1.在200多年前,有个10岁的名叫高斯的孩子,在老师提出问题:“1+2+3+…+100=?”时,很快地就算出了结果.他是怎么算出来的呢?他发现1+100=2+99=3+97=…=50+51=101,于是1+2+…+100=101×50=5050.
2.受高斯算法启发,你能否求出1+2+3+…+n的和.
3.高斯的方法妙在哪里呢?这种方法能否推广到求一般等差数列的前n项和?
二、建立模型
1.数列的前n项和定义
对于数列{an},我们称a1+a2+…+an为数列{an}的前n项和,用Sn表示,即Sn=a1+a2+…+an.
2.等差数列的求和公式
(1)如何用高斯算法来推导等差数列的前n项和公式? 对于公差为d的等差数列{an}:
Sn=a1+(a1+d)+(a1+2d)+…+[a1+(n—1)d],①
依据高斯算法,将Sn表示为Sn=an+(an—d)+(an—2d)+…+[an—(n—1)d].
②
由此得到等差数列的前n项和公式
小结:这种方法称为反序相加法,是数列求和的一种常用方法.
(2)结合通项公式an=a1+(n—1)d,又能得怎样的公式?
(3)两个公式有什么相同点和不同点,各反映了等差数列的什么性质? 学生讨论后,教师总结:相同点是利用二者求和都须知道首项a1和项数n;不同点是前者还须要知道an,后者还须要知道d.因此,在应用时要依据已知条件合适地选取公式.公式本身也反映了等差数列的性质:前者反映了等差数列的任意的第k项与倒数第k项的和都等于首、末两项之和,后者反映了等差数的前n项和是关于n的没有常数项的“二次函数”.
三、解释应用 [例 题]
1.根据下列各题中的条件,求相应的等差数列{an}的前n项和Sn.
(1)a1= —4,a8= —18,n=8.(2)a1=14.5,d=0.7,an=32.
注:恰当选用公式进行计算.
2.已知一个等差数列{an}前10项的和是310,前20项的和是1220.由这些条件能确定这个等差数列的前n项和的公式吗?
分析:将已知条件代入等差数列前n项和的公式后,可得到两个关于a1与d的关系式,它们都是关于a1与d的二元一次方程,由此可以求得a1与d,从而得到所求前n项和的公式.
解:由题意知
注:(1)教师引导学生认识到等差数列前n项和公式,就是一个关于an,a1,n或者a1,n,d的方程,使学生能把方程思想和前n项和公式相结合,再结合通项公式,对a1,d,n,an及Sn这五个量知其三便可求其二.
(2)本题的解法还有很多,教学时可鼓励学生探索其他的解法.例如,3.2000年11月14日教育部下发了《关于在中小学实施“校校通”工程的通知》.某市据此提出了实施“校校通”工程的总目标:从20XX年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,20XX年该市用于“校校通”工程的经费500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从20XX年起的未来10年内,该市在“校校通”工程中的总投入是多少?
教师引学生分析:每年“校校通”工程的经费数构成公差为50的等差数列.问题实质是求该数列的前10项的和.
解:根据题意,从2001~20XX年,该市每年投入“校校通”工程的经费都比上一年增加50万元.所以,可以建立一个等差数列{an},表示从20XX年起各年投入的资金,其中,a1=500,d=50.
那么,到20XX年(n=10),投入的资金总额为
答:从2001~20XX年,该市在“校校通”工程中的总投入是7250万元. 注:教师引导学生规范应用题的解题步骤.
4.已知数列{an}的前n项和Sn=n2+
n,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?
解:根据
由此可知,数列{an}是一个首项为,公差为2的等差数列.
思考:一般地,数列{an}前n项和Sn=An2+Bn(A≠0),这时{an}是等差数列吗?为什么?
[练习]
1.一名技术人员计划用下面的办法测试一种赛车:从时速10km/h开始,每隔2s速度提高20km/h.如果测试时间是30s,测试距离是多长?
2.已知数列{an}的前n项的和为Sn=
n2+
n+4,求这个数列的通项公式.
3.求集合M={m|m=2n—1,n∈N*,且m<60}的元素个数,并求这些元素的和.
四、拓展延伸
1.数列{an}前n项和Sn为Sn=pn2+qn+r(p,q,r为常数且p≠0),则{an}成等差数列的条件是什么?
2.已知等差数列5,4,3,…的前n项和为Sn,求使Sn最大的序号n的值.
分析1:等差数列的前n项和公式可以写成Sn=以看成函数y=x2+(a1-
n2+(a1-)n,所以Sn可)x(x∈N*).当x=n时的函数值.另一方面,容易知道Sn关于n的图像是一条抛物线上的一些点.因此,我们可以利用二次函数来求n的值.
解:由题意知,等差数列5,4,3,…的公差为-,所以
于是,当n取与最接近的整数即7或8时,Sn取最大值.
分析2:因为公差d= -<0,所以此数列为递减数列,如果知道从哪一项开始它后边的项全为负的,而它之前的项是正的或者是零,那么就知道前多少项的和最大了.即使然后从中求出n.
点 评
这篇案例从具体的实例出发,引出等差数列的求和问题,在设计上,设计者注意激发学生的学习兴趣和探究欲望,通过等差数列求和公式的探索过程,培养学生观察、探索、发现规律、解决问题的能力.
对例题、练习的安排,这篇案例注意由浅入深,完整,全面.拓展延伸的设计有新意,有深度,符合学生的认识规律,有利于学生理解、掌握这节内容.
【高中数学新课程创新教学设计案例50篇 19 平面与平面垂直】推荐阅读:
高中数学《平面向量》的教案03-08
高中数学知识复习要点掌握之平面向量10-29
高中数学 第二章《平面向量》复习课教案 新人教A版必修01-25
高中数学新课程改革实践的体会与思考09-27
新课程小学数学课堂教学如何改革与创新01-20
新课程标准下普通高中数学教学模式的探索08-12
高中数学立体几何:垂直关系09-30
普通高中新课程培训——数学10-07
高中新课程数学观分析的论文07-03
高中数学新课程学习心得体会08-13